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Abstract. Several one-step schemes for computing weak solutions of Lipschitzian quantum stochas-
tic differential equations (QSDE) driven by certain operator-valued stochastic processes associated
with creation, annihilation and gauge operators of quantum field theory are introduced and studied.
This is accomplished within the framework of the Hudson—Parthasarathy formulation of quantum
stochastic calculus and subject to the matrix elements of solution being sufficiently differentiable.
Results concerning convergence of these schemes in the topology of the locally convex space of so-
lution are presented. It is shown that the Euler-Maruyama scheme,with respect to weak convergence
criteria for Ito stochastic differential equation is a special case of Euler schemes in this framework.
Numerical examples are given.
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1. Introduction

This paper is concerned with the development, analysis, and applications of several
types of one step schemes for solving the following quantum stochastic differential
equation introduced by Hudson and Parthasarathy in [10]

dX(t) = E(t, X(t))dA,(t) + F(t, X (1)) dA;I-(t) +
+G(t, X (1)) dAg (1) + H(z, X (1)) dt, (1.1)
X (ty) = X9, almostallt € [ty, T].

In Equation (1.1), the coefficients E, F, G, H lie in a certain class of stochas-
tic processes for which quantum stochastic integrals against the gauge, creation,
and annihilation processes Ay, AJ;, A, and the Lebesgue measure are defined.
Equation (1.1) involves unbounded linear operators on a Hilbert space and it is
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a noncommutative quantum generalization of the classical stochastic differential
equations of the form

dX(@, w)=H(, X)dt + F(¢, X)dQ(1),

X(to) = Xo, t € [fy, T], (1.2)

where the driving process Q(#) is a martingale and H, F are sufficiently smooth
ordinary functions. Unlike Equation (1.1), numerical schemes for solving Equa-
tion (1.2) are fairly well developed. Each of the schemes exhibits specific features
depending on the driving process and the solution space of Equation (1.2) (see
[11, 16, 19-23]).

However in [3], Equation (1.1) has been reformulated in the following equiva-
lent form:

d
a(n,X(t)%‘) = P(t, X(1)(1, &), (1.3)

X (1) = Xo, te€lt,T],

which is an ordinary differential equation of nonclassical type.

The solution stochastic process X (¢) is a densely defined linear operator on
some tensor product of two Hilbert spaces, one of which is the Boson Fock space;
1, & lie in a dense subset of the tensor product Hilbert space and the map (, §) —
P(t, X)(n, &) is a sesquilinear form for fixed (¢, X). The explicit form of this map
is given by Equation (2.3) below.

Although the general theory of quantum stochastic differential equations and
inclusions has recently undergone rapid developments [2-5, 7-10, 14, 24], there
have not been corresponding developments in their numerical solutions. Unique
and unitary analytical solutions of some of these equations are known to exist but
are difficult to come by and generally are not in a readily usable forms.

The results of this paper are accomplished subject to some smoothness condi-
tions on the map ¢+ — (n, X (#)§), Lipschitz and continuity conditions on the map
(t,x) = P(t, x)(n, &). Linear multistep and quadrature schemes will be addressed
elsewhere. We examine the questions of convergence and consistency in respect of
discrete schemes that approximate matrix elements of solutions of QSDE. We are
able to introduce these schemes since the matrix elements (n, X (¢)&) of solution
X (t) of problem (1.1) have the advantage of being differentiable and their deriv-
atives are sesquilinear form-valued maps given by Equation (1.3). Moreover the
schemes here are independent of any feature of the integrator processes and do not
depend on some approximation procedures based on stochastic Taylor expansions
as in the classical case for real valued processes. They involve less complicated
analysis and their order of convergence are independent of such approximation
procedures.

Another important feature of the schemes concerns implementations. Com-
putations of the discrete values of the matrix elements of solution are carried
out directly as obtained in the implementations of discrete schemes for solving
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We establish an exponential formula for the reachable sets of quantum
stochastic differential inclusions (QSDI) which are locally Lipschitzian
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1. INTRODUCTION

We continue our studies in Ref.”! concerning the reachable sets (or

attainability sets) of quantum stochastic differential inclusions given by

dX(t) € E(t,X(1))d A (1) + F(t, X(1))dAs (1) + G(t, X(t))dA;f(t)
+ H(t,X(t))dt, almost all t & [0,T]

X(0) = Xo. (1.1
In Eq. (1.1), E, F, G, H lie in L}, ([0,T]X A),,,, X : [0, 7] — A belongs to

loc
le(,c.(;l) and A ,, A, A;f : [0, T] — A are the driving gauge, annihilation and
creation processes. As usual A4 is the locally convex space of noncommutative
stochastic processes whose topology is generated by the family of seminorms
{Ilxllpe = Km, x| : x € A, 1, &£ € DRE} (see Refs.>>#71% for details).
For arbitrary 7, £ € DRE, it is well known (see Refs.'>*®]) that Eq. (1.1)

is equivalent to the first order initial value nonclassical inclusion given by
d
51 X08 € P, X(D)(n, &

X(0) =Xy, almost all ¢ € [0,T] (1.2)

where (7, &) — P(t,X(1))(n, £ is a multivalued sesquilinear form on DXE
with values in C, the field of complex numbers. The explicit form of the map P
is presented in Section 2 below.

By adopting similar notations as in Wolenski,?°! involving reachable sets
and sets of trajectories of classical differential inclusions, our considerations
in this paper mainly focus on the reachable set R")(X,), which is defined by

RD(Xy) = {D(T) : D(-) solves Eq. (1.2)}. (1.3)
For arbitrary 7, ¢ € DQE, we associate with Eq. (1.3) the set

RPXo)(n, & = ({n, D(T)E,) : D(T) € RV (Xp)}. (1.4)
Similarly, the set of trajectories of Eq. (1.2) is defined by

SD(Xg) = {®(-) : P(-) solves Eq. (1.2)}. (1.5)
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Quantum Stochastic Differential Inclusions 517

Again, associated with Eq. (1.5), we define S (Xo)(n, & by:

SDXo)(n, & = {{(n, POIE ) : () € SV (Xp)}. (1.6)

The main result of this paper is that the exponential formula

T N
RD(Xo)(n, & = lim (1 + NP> Xo)(n, &) (1.7)

for the autonomous version of Eq. (1.2) holds subject to the map x — P(x)(n, &)
being locally Lipschitzian with convex values and the stochastic processes are
defined only on a simple Fock space. For the nonautonomous case, the
corresponding formula is given by Eq. (4.13) below. The power of (I + %P) in
Eq. (1.7) is that of composition of multivalued sesquilinear forms, defined in
Section 4 and the limit is a set limit in the sense of Kuratowski. The identity
multifunction 7 : A — 24 takes x — {x}.

An important consequence of formula (1.7) is that solutions of the
inclusion (1.1) or (1.2) need not be invoked in order to determine the points in
RDXy)(n, &. This situation is similar to what obtained in the case of
reachable sets for classical differential inclusions as explained in Ref.*"),

Another important feature of Eq. (1.7) concerns discretizations of
quantum stochastic differential inclusion (1.2). Equation (1.7) implies that the
set of all endpoints of the matrix elements of discrete trajectories of Eq. (1.2)
converge to the entire reachable set R (X()(n, €. Consequently, we obtain
convergence results concerning discrete approximate reachable sets of
Eq. (1.2).

This work is partly motivated by the need to develop numerical analysis
of quantum stochastic differential inclusions. As highlighted in Ref.”!,
emphasis so far has been on numerical procedures for continuous quantum
stochastic differential equations with high degree of differentiability of the
matrix elements of solutions (see Refs.*~*). The numerical analysis of the
discontinuous equations needs to be developed as well since a large number of
quantum stochastic differential equations arising from applications are
discontinuous but may be reformulated as regularized inclusions. Questions
concerning estimations of the Hausdorff distance between the sets of solutions
of Eq. (1.2) and the set of solutions of its discrete approximation will be
considered in a forthcoming paper.

The plan for the rest of the paper is as follows: Section 2 contains
preliminary notations and basic prerequisite results. In Section 3, we establish
a result concerning approximation of trajectories of Eq. (1.2) by trajectories
whose matrix elements are continuously differentiable. This extends the result
of Wolenski®” concerning approximations of solutions of classical
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differential inclusions by C ' trajectories. The main results, concerning the
exponential formula, are established in section 4. We formulate the discrete
Euler approximations of the reachable set of Eq. (1.2). Finally, we show that
the discrete reachable sets converge to the entire reachable set of Eq. (1.2).

2. PRELIMINARY RESULTS AND ASSUMPTIONS

As in Refs.? 7287101 we associate with the locally convex state space A
of non-commutative stochastic processes the spaces Ad(A), Ad(A),e,
L, (A), LY, (Ry) for a fixed Hilbert space y and for 0 < p < co.

If A is a topological space, then clos(A) (resp. comp(A)) denotes the
collection of nonvoid closed (resp. compact ) subsets of A.

We employ the Hausdorff topology 754 on clos(A) determined by a family
of pseudo-metrics {pge(-), M, & € DAL} on clos(A) as follows:

For x € A, M, N € clos(A),

e, A = infllx = vl

8n§(M7N) = SuPdn.f(xaN)7
XEM

and
pnf(M,N) = max(b‘,,g(/\/l,./\/'), Sng(Na M))

For M € clos(A), (| M]l¢ = dye(M, {0}).
Similarly, for A, B € clos(C) and x € C, the complex numbers, let

d(x,A) = yirelglx =l

6(A, B) = supd(x, B)
XEA

and
p(A, B) = max(6(A, B), 8(B, A))

Then we employ the metric topology on clos(C) induced by p. The set -
theoretic operations are adopted as usual (see Refs.®*~'! for details).

In the followings, Kuratowski limits of set will be frequently employed. If
{M; };il is a sequence of subsets of .4, we define the limsup and liminf of
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Quantum Stochastic Differential Inclusions 519
{M_/tl } by
lim sup M; = {a : liminf d¢(a, M;) = 0} 2.1
J— J—
liminf M; = {a : limsupd,(a, M;) = 0}. 2.2)
J—00 ! J—oo

If lim sup M; = lim inf M, we say that the limit exists and write lim;_..,M;
for the common value. We observe that if each M; and A are compact in A and
contained in a bounded set, then from Egs. (2.1) and (2.2), A = limj_,M; if
and only if pye(M;,A) — 0 as j — 0.

Similar definitions hold for the Kuratowski limit of a sequence of subsets
of C, the field of complex numbers. However, the Hausdorff metric p will now
replace the family of pseudo metric above.

Continuous Multivalued Stochastic Processes

A multivalued stochastic process indexed by the set [0,7] C Ry is a
multifunction on [0, 7] with values in clos(A). As in Ref.)] the set of all
locally p-integrable multivalued stochastic processes will be denoted by

ZOL(.A)mW, p € (0,00) while le(l X .Zt)mw is the set of maps & : X A
clos(.A) such that the map t — ®(t, X(¢)), t € [0, T] lies in le(A)mvs for every
XeLl (A.

For f,g € LY, (Ry), mE Ly 1, (Ry), 1 is the identity map on
’R®F(L2([R+)) and M is any of the processes Af,A ~ands— s1,5s € R,
then[ 8t]he multivalued stochastic integral f o D(s, X(s))dM (s) is adopted as in
Ref.

Let G : [0, T] — 2 be a given multivalued stochastic process indexed by
[0, T]. Then we say that G is upper semicontinuous at fy € [0, T] if

jl_i,rg sup G(#;) C G(1o)

for all sequences {t;} with t; — 1.
The map G is lower semicontinuous at #; if

G(1) C liminf G(1))
J—oo

for all {#;} with ¢; — 1.
G is said to be continuous if it is both upper and lower semicontinuous.
Similar definitions of continuity hold for a multifunction of the form: ® :

A— 24,
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Lipschitzian Multifunctions

These are defined as follows:

(i) Let A be an open subset of A. A map ® : N'— comp(.A) will be
called Lipschitzian if for all n, £ € DXL, there exist positive numbers K,
such that

Pn§(¢(x)7‘D(Y)) = K"r]f”x - y”"rlfv vay S N

We say that @ is locally Lipschitzian if it is Lipschitzian on each compact
subset of N.

() If ®: N — 29080 where sesq(DRE) is the linear space of
sesquilinear forms on D®E, then & is Lipschitzian if

P(‘D(x)(”)a av q)()’)(”)a f)) = K”q{”-x - y”1]§7

where K, are positive real numbers.

We remark here that by Proposition (6.2) in Ref.®! the map (¢,x) —
P(t,x)(n, &) appearing in Eq. (1.2) is Lipschitzian if the coefficients
E,F,G,H:[0,T|Xx A—24in Eq. (1.1) are Lipschitzian.

For E, F, G, H lying in L} (I X A)ps> Eq. (1.1) is understood as integral
inclusion given by

X)) € Xo+ / (E(s, X()d Ay () + F(s,X(8)dAs(s)
0

+ G(s,X(s))dA;(s) + H(s, X(s))ds), te&[0,T], (2.3)

with initial data (¢y, Xg).

The explicit form of the map P(z, x)(n, £) is given as follows: For (¢, x) €
Ry X A, 1, £ € DRE, such that n = cQe(a), £ = dQe(B), c,d ED, a, B €
L‘;Zloc([R?Jr), define the multifunction

Pog : [0,T] X A— 24
by

Pop(t,x) = pap(E(t, x) + va(OF(t, x) + 0o(H)G(t,x) + H(t, x)
where

Kap(t) = (a(t), m(DBD),

vp(t) = (f(1), B(®))y
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and

oalt) = (1), 8(1)),.
This leads to the multifunction
P:[0,T] x A— 25420
defined by
P(t,x)(n, &) = (n, Pap(t,0)€,) = {{n, Z(t,0)&,) : Z(t,x) € Pop(t,x)}.

As in Ref."?®!, we shall introduce the notion of escape times. In what follows,
unless otherwise indicated, we first consider the autonomous version of
Egs. (1.1) and (1.2).

Let N C A be an open subset and xy € A'. Assume that P(x)(n, £) has
compact values and is locally Lipschitzian on A. Then we define the escape
time T by

T=sup{ T: clUR(’)(xo) is compact in N 3,

0=r=T

where “cl” denotes the closure of the set.

Next, we present a non-commutative generalization of the Fillipov
existence theorem for inclusion (1.2) due to Ref.’®!, in a form suitable for our
purpose. To this end, for an arbitrary process Z:[0,7]— A lying in
Ad(A), 4, we define

T rd
a(Z) = /0 d(dt<n’ Z(1)&), P(Z(1)(m, @) dr.

Theorem 2.1.  Assume that the following conditions hold:
(a) Z:1w— Aisan arbitrary process lying in Ad(A),,,. such that there
exists positive functions Wyg(t) satisfying

d
d(@(% Z(1)&), PZ®)(n, %)) = Wae0).
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(b) There exists 6 > 0 and /\[ C A such that each of the maps E, F, G,
H is Lipschitzian from N to (clos(A), Ty) and that

0zo={xEA:|lx —ZDO|lye = 0,Y, £ € DAE  for some t € [0,T]} CN.

(c) Kne> 0 are the Lipschitz constants for the map P : N'— 2sesgDZE)
on N.
(d) For arbitrary m, & € DQE, ¢t € [0,T],

t
Eqe(t) = e / dsW pe(s).
0
If in addition, E, F, G, H are continuous from A to (clos(A), Ti) and
T
/ Woe(tdt < feKnl
0

then there exists a solution ® € ST (Z(0)) of Eq. (1.2) satisfying
10 = ZDllye < 0@, 1€

and

d d
E(na q)(t)§> - E“I,Z(f)@ = KngEnf(t) + W'r]f(t)

for almost all t € J where
J={t €[0,T]: Eye(t) = o(Z)e*=" < 0}.

The next result is a useful lemma due to Wolenski.'*"!

Lemma 2.2. Suppose that R, S, M;, M,, My are real constants satisfying
Mj+1:R+SMj, fOI' ]ZI,ZN,
then

1 -8V
1-5

MN:R< >+SNM0 if S#1,

=NR+M, if S=1.
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3. SOME DENSITY RESULTS

In this section, we show that an arbitrary trajectory of the Inclusion (1.2)
may be approximated in .4 by a trajectory whose matrix elements are of class
C! [0, T'], provided that the coefficients E, F, G, H are locally Lipschitzian and
the map P(x)(m, &) has convex values in C. This extends similar results in
Ref.*"! to the present non-commutative quantum setting. In what follows, in
this Section and Section 4, we consider the initial space R = C. Consequently,
DXE = E and ’R®F(L§/([R+)) = I‘(LZY([RQ)).

Theorem 3.1. Suppose that the following conditions hold.
(i) N is an open subset of A and P: N — 290 s a multivalued
sesquilinear form with nonempty, convex and compact values in C.
(i) The coefficients E, F, G, H are locally Lipschitzian on N.
(iiiy ®() € SD(xy) is a trajectory of Eq. (1.2) with matrix element
(1, POE) = D) € ST o), &).

Then for each € > 0, there exists ®(-) € ST (xo) such that
(0, BC)E) = Dye() € SPxo)(m, () €10, 7]

and
[(5) = DDl < e.

We first establish the following Proposition which will be employed in the
proof of Theorem 3.1.

Proposition 3.2. Let N, the map P and the coefficients E, F, G, H be as in
Theorem (3.1) and suppose that the following hold.

(i) Y :[0,T]1— Aisan arbitrary process lying in Ad(A),,,. such that its
matrix elements Y pe(+) == (m, Y(-)&, ) belong to C'[0, T for each pair

néE€ L. y
(ii) There is a compact set Q C A and 6 > 0 such that the set

{x:llx=YOll, =86, forsome 0=r=T Vné€EE}CQOCN.
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Let K¢ be Lipschitz constants for the map P on Q. Assume further that
oY) < Qe KnT

Then, there exists a trajectory Y(-) € ST(Y(0)) with
Voe() € SO (0)(m, &) €0, T]

satisfying
1Y(®) = ¥(0)llpe < o(X)e

We require the following lemma for the proof of Proposion (3.2).

If A C Cis a closed, convex set and a € C, we denote by proj(a,A), the
unique element in A closest to the point a.

Lemma 3.3. Suppose that G:[0,T]1— 2" is a multivalued stochastic
process such that the map t— G(t)(n, &) is a continuous multivalued
sesquilinear form with nonempty, closed and convex values on [0, T]. Suppose
further that V :[0,T1— A is an adapted process such that the map t—
(n, V()&,) is continuous for each pair of m, & € E. Then the map

t— proj((n, V)&, ), G(1)(n, §)

is continuous on [0, T].

Proof. The proof is an adaptation of the arguments in (Ref.*"), Lemma 3.3)
as follows: For each pair of 7),&, set

Py(t) = proj((m, V(H), G(1)(n, §)

Let 7o € [0,7] and {#;},=; C [0, T] with #; — 1y as j — 0.

Since t— G(#)(n, §) is continuous, the sequence {P,gt)} is bounded and
therefore has a convergent subsequence.

We assume that Ppg(tj)) — pps as j— o by passing to a subsequence if
necessary but retaining the same notation. To conclude the proof, it is
sufficient for us to show that

Pye(to) = P

Since t — G()(m, &) is upper semicontinuous~at to, we have ppe € G(to)(n, §),
where pr: = (m, p&), for some p € G(ty) C A.
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Again, since t — G()(n, £) is lower semicontinuous at #,, there exists gnz; €

G(t))(n, &) such that gy — Ppe(to).
Hence, we have

|V yelto) — el = jl_igwng(tj) — Pp(tp| = jlig|Vn§(fj) = gl

by definition of Pyg(t))
3.1
= |Vye(to) — Pye(to)l,

by continuity of V,(-) and the absolute value function |-|.
But P,g(tp) is the unique element in G(tp)(7, &) closest to V ,(to). Therefore,
the last inequality implies that

Py(to) = Pre.

Proof of Proposition 3.2. The stochastic process Y € Ad(A), e is given
such that (1, Y(-& € C'[0, T] for each 7, £ € [ and satisfies

a(Y) < Ge KnT

By Lemma 3.3,
d
t— Voo = proj (Em, Y(1)é), P(Y()(n, é))

is continuous on [0, T']. Set

t

Ha=@l@$+%vwmm

Then,
Ynf,l(') ecC ! [07 T]7
with
d
Y1) = Vigod) € PV, §

by definition.
Since Y g 1(7) is a sesquilinear form on [0, T, there exists a stochastic process
Y, :[0,T]— A such that

Yoe1(®) = (n, Y1é).
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Since

! d
1Y ne1(8) = YD) = ‘/O(Vng,o(S) - $<n’ Y(s)§)ds

<\/U

! d
- /O d<£<n,Y(S)§>, PY(5))(n, @)ds = o(r) < 0.

d
Vipgo(s) — $<n, Y(5)&)|ds

ie
Y1) = Y(O)ll e < 6.
Then,
Yi(H) € Q C N, Vt € [0,T].
Next, we set
Yaeo() = Yoe(o). (3.2)

Inductively, suppose that n = 1 and that adapted processes { Y} 7:1 have been
chosen such that the sequence {{n, Y;(-)¢, )}7=l are continuously differentiable
on [0, T] for all 0, £ € E satisfying Eqgs. (3.3)—(3.6) below, forall 0 = ¢t =T

andj=1,2...n

d
E(”fh Yi(0)é) € P(Y;—1(D)(m, &), (3.3)

Jj—1.j-2
O(Y)Kng t

d d
E<"’ Yi(1)é) — E(n, Yio(0d| = G=21 (3.4
K,y ™!
{0, Y;(H&) — (n,Y;-1(0é)| = o(Y)((j"f—t);)!, (3.5
Yi(0) € Q. (3.6)

First, we observe that when j = 1, Egs. (3.5) and (3.6) follow directly from
Eq. (3.2), Eq. (3.3) is obvious and Eq. (3.4) is vacuous.
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Next, we begin by defining

d
Vagnt1(1) = proj <dt<77, Yu(0&), PYa(0)(n, f))

and

Yoens1() = (0, Y(0)&) +/0 Vanent1(8)ds = (0, Y, 1(08),

for some stochastic process Y, : [0, T]— A.
By Lemma 3.3, t — V¢,4.1(¢) is continuous and

d
a Yoeni1() = Vaenr1(0).

This implies that
Ypent1() € C'10,T].

Let t € [0, T], then

d
ar Ypent1(H) € P(Y,(0)(m, &).

Therefore,

d d
‘E Yoeni1 (D) — E(”h Y,,(t)f)‘

d
=d <E (M, Yu(D)&), P(Y u(D)(7, §)>

= p(P(Ys 1 (1)(0, &), POVu(0)(m, ©) by Eq. (3.3), 3-7)
= KyellY,—1() — Y, (0ll,¢ by Lipschitz property,
Ko

The last inequality shows that Eq. (3.4) holds for j = n + 1.
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Next, we have

|<777 Yn+1(t)§> - <77» Yn(l)@

/
=
0

d
% Yns‘,n+1(s) - a@h Y, (8)é)|ds

tpn on—1

— né
=o0((Y) ) = 1)!ds by (3.7)

_ U(y)(’(zif’)", (3.8)

The last inequality shows that Eq. (3.5) holds for j = n 4 1. Finally, we have
1Y,q1() — YOl e

= (0, Y1 (08) — (0, Y]

=> 0¥ 09 — (n, Y&
j=0

= o-(Y)Z (K;'—fty by Egs. (3.5) and (3.8)
=0

< g(YV)eknl < 9. (3.9)

This shows that Y, (f) € Q. The induction proof is complete.

The foregoings imply the existence of a subsequence {Y; }jf'il of adapted
processes Y; : [0,7]— A lying in Q with the property that the sequence
{{(m, Yj(-)‘f)};il are continuously differentiable on [0, T7.

It follows from Egs. (3.5) and (3.4) that {Y;(#)} is Cauchy in Q with the

property that {i(”r’, Y j(t)f)} is also Cauchy in C, the field of complex
numbers. Consequently, {Y;(1)} converges uniformly to some Y(t)in Q, i.e

This implies that

(n,Y,(H®—(n,Y(nHd as j— oo.
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The function (n, ¥(-)&) is continuously differentiable on [0, T] since (1, Y;()&

lies in C'[0, T'] for each j.
Hence

d d -
—(n, Yi(6)&) — —(n, Y(1)é).
51 Y08 — {0 Y(1)E)
By Eq. (3.4), 4(n, ¥(1¢) is continuous by the continuity of the sequence

{%(n, Yj(t)f)} on [0, T] for each j.
Moreover, for each t € [0, T] and by Eq. (3.3), we have

d, - . d . 5
E(n, Y(n¢) = ,&%Em’ Y;(né) € Jim P(Y;-1(0)(n, §) = P (1)(n, &)-

Hence,

Y() € s (x(0))
with

(n,Y()é) € SO (©0)(n, é).
Finally, from Eq. (3.9), we obtain

17() = YOllye = HmllY i1 (8) — Y(O)lle = o(¥)e T

n—oo

The next result is a direct application of Lusin’s Theorem (see Refs.['71%)) to
elements of Ad(.A) with Lebesque measurable matrix elements. The result will
be employed in the proof of Theorem (3.1) that follows.

Theorem 3.4.  Assume that the following conditions hold:
f 10, T]— A is a stochastic process such that for all n, ¢ € E,
Fue®) = (m,f(0)&) is Lebesque measurable on [0,T] and

R,:=su 1.
né [Q}?]lfn.f( )l

Then, given € > 0, there exists a borel subset J C [0,T] and a continuous



ﬂ MARCEL DEKKER, INC. ¢ 270 MADISON AVENUE « NEW YORK, NY 10016
™

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

530 Ayoola

Sunction Zyz 2 [0,T] — C such that
Zyet) = fne(n), 1€[0,T]—J,

sup|Z,(t)] = R
[ng| e = Ry

and
L(J) < €,

where L denotes the Lebesque measure.

Proof. Since fr¢(t) is measurable on [0,T] and L([0,T]) < oo, then, by
Lusin’s Theorem, (see Ref.!'®! page 225 ) there exists a Borel subset J C
[0, T] such that

LJ)<e
and

fne() € C(0,T] — ).
Next we define

Zne(t) = fe(0), tE€[0,T]—J,

R
Zyelt) = M—”glm, o, tE€J.
We note that Z,¢(-) is well defined since [(n, &| # 0, Vn, £ € E, where
(& =eP,

n=e(@), é=eP), aBEL(Ry).
Consequently,

Zqe(-) € C[0,T]
and the set

J={t €[0,T]: Zyet) # fre(n)}
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satisfies

L) <e.
Again,

sup|Z ()| = su 1) = R
[O,]Pll nf( )l [017P]|fn§( )l né

Proof of Theorem 3.1. Given that () € S (X,) and € > 0, we have
D) € SN(T)(X())(T], &) for each pair of 1, £ € E. We show that there exists a
trajectory ®(-) such that

®,e() € ST Xo)(m, () C'I0,T],
and [|®() — D()ll,¢ < €, where D¢(-) = (m, D).
We assume without loss of generality that € is sufficiently small so that the

following hold

{u:lu— P, =e€, forsome0=r=T,Vné€EE}CQCWN,

for some compact set Q contained in N.
Let K, = 1 be Lipschitz constants for the map x — P(x)(n, §) on Q and let

Ry = sup{lv,,gl VNS UP(u)(n, §)}

ueQ

Since ®(-) € SD(X,), we have

d

—(n, P& =R

1. 008)] = Ry

for almost all # satisfying 0 = ¢t = T. Let

d
fn‘f(t) = E<n7 q)(t)@a te [07 T]?

then by Theorem (3.3), there exists continuous functions Z,(-) on [0, T'] and
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a Borel subset J C [0, T] such that

Z’r]§(t) :f‘f)g(t)7 for te [O; T] - J7 V"I: ‘fa

suplZ&(t)| = Ry¢,
sup ne(1) e

and

€

L{J) = ;
4K peRpe(1 + T)eXKnT

where L is the Lebesque measure on [0, T7.
Next we define for each pair of 7, &

t

Yelt) = (m, Xoé) + /0 Zne(s)ds.

Then
Y () € C'[0, T

As Yy(r) is a sesquilinear form, there exists a stochastic process Y :
[0, T]— A such that

Yae(t) = (n, Y (1)), almost all 1€ [0,T].
It is immediate that Y lies in Ad(A),qe by definition.

Observe that for all t € [0,T] — J, {0, Y()&) — (n, P()é) = 0.
However, for all t € [0, T], the following hold:

[(m, Y()&) — (n, POE| = 1Y (1) — P@)l ¢
=
€

€
= =_,
2K peeXnT(1+T) ~ 2 (3.10)

d
Zy(s) = 2-(n, D(5)8)|ds = 2Ryel))

Again, we observe that Eq. (3.10) implies that the set {u : [lu — Y(©)ll,¢ = §
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is contained in Q. Next, we estimate o(Y) as follows:
T rd
o = [ d(Em Y&, PYO)(n, a)
0
= / p(P(D(1)(m, §), P(Y())(m, §))dt
[0,71-J
d
+ [[a(Gnvon. oy, g)a
J

T
= Koy /0 () — Y(O)llyedt + 2R ().

Consequently, by applying Eq. (3.10), we have

Ky :Te €

Y)=
o¥) 2K pee®0l (1 +T) 2K pee®nT(1+T)’

_E|:K»,]§T+1

= mEm L © | KT < E —KoyeT 1 K.:=>1.
) K»,,g(l T T):| e 26 , SInce né

Application of Proposition (3.2) to the process ¥ : [0, T] — A with 6 = 5 and
Q, implies that there exists ®(-) € S (X,) such that

Be() € SO Xo)m, () C'0,T] Vm, E£€E

and

€

Y (r) = D)l < 5

Finally, by employing Eq. (3.10) again, we conclude that
1) = @)l = 191) = YOlle + 1Y (1) = D)l < €.
ie

D) — POl < €.
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4. THE EXPONENTIAL FORMULA

We first present the definitions of composition of multifunctions suitable
for our purpose. Unless otherwise indicated, m, £ € E such that 1 = e(w),
E=elp), a,BE L%,([RQ. In what follows I is the multifunction that takes
x— {x}.

Definition 4.1.  Let Gp and G : A — 2 be multifunctions defined on A. By
composition Gyp°Gy : A— 24 of G, with G,, we mean the set

GooGi1(x) = {z: there exists y € Gi(x) with z €& Gy(»)}.

GS’ denotes the composition of G, with itself N times.

Definition 4.2.  The composition of the multivalued sesquilinear form P :
A — 25¢54®) with itself N times is defined by

PN(x)(m, & = (m, PIZB(X)&
where
PIZB cA—24

is the composition of P,g with itself N times in the sense of Definition (4.1).

Theorem 4.3. Suppose N C A is open and P : A— 2¢4® s q locally
Lipschitzian multivalued sequilinear form with nonempty, compact values on
N. Let Xy € N be fixed.

(i) For0=T =T, one has

N
N sup (’ " 1%')) Xo)(m, &) C IR (Xo)(, & “.)

(ii) Ifin addition, P is assumed to have convex values, then for all T = 0,
we have

N
RD(Xo)(n, § C Jiminf (1 +§P> Xo)(m, §)- 4.2)
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Proof. (i) Suppose 0 =7 =T. Let Q = clJy=,—r R(Xo).
Then Q is compact by definition of 7. So there exists 6 > 0 such that Q +
0B C N, where B is the closed unit ball in A. We put

Rye = sup{|Vyel : Ve € P(Q + 0B)(m, §)}

= sup{|Vyel : Ve € UP(M)("?; 9}
ueQ+6B

and put K,z > 0 to be Lipschitz constants for P on Q + 6B.
Let € > 0. We show that for all large N satisfying

T 0
Z < min € , : (4.3)
N RT]EKT}§T6 Kyl 2R’fl§

the inclusion
T J .
<1 + NPaB) (Xo) C RW(X,) + €B 4.4)

holds. Consequently, the inclusion

T\ i
(; + NP) (Xo)(n, & C RBX)(1, & + eB(1, (4.5)

immediately follows from Eq. (4.4). Here, B(1n, &) = {{n,x) : x € B}. Since
€ is arbitrarily small, we can then conclude that Eq. (4.1) holds.

In the sequel, we put h = 1%, t; =jh for j=0,1,2...N, where N satisfies
Eq. (4.3).

We shall establish Eq. (4.4) by induction on j. The case j = 0 is trivial. For the
induction hypothesis, suppose Eq. (4.4) holds for all i such that 0 =i = <
N.Let Yii1 € (I + hPogy ™' (Xo). Then there exists Yo = Xo, Y1, Y>...Y; and
U, U;...Uj so that for 0 =i = j, we have

UiEPaB(Yi) and Yi+1:Yl‘+hUi.
We remark that when 0 = i = j, Eq. (4.4) implies that
0
Y;€eQ0+=B
2
so that



uﬁlil MARCEL DEKKER, INC. ¢ 270 MADISON AVENUE « NEW YORK, NY 10016

™

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

536 Ayoola

and so
1, Uil = (Uil = Roe.
j+1

Let ®(-) be defined on [0, #j11] as the piecewise linear interpolation of {Y;}, 1,
equally spaced on [0, #;;1] as follows

OO =Y, +@—t)U; if t;=1t=1ty,. (4.6)

®(1) is adapted and weakly absolutely continuous on [0, #j4;]. The range of
®(-) lies within Q + 6B because

0
Yit+(t = t)Ui € Q+ 5B+ hRyeB C Q + 6B.

This follows from Eq. (4.3) since hR,s = g . Hence we have

iyl d
o(P) = /0 d(am (D9, PP (1)(n, @) dt
J iy
=) / p(P(Y)(m, &), P(D(1)(m, )d
i=0 7l

J tiy1
= K’le/ lY; — ®(0)ll,edr by Lipschitz property of P
i=0 Y1

=< KyeTRyeh < ee X" by (4.3).
By Theorem (2.1), there exists a solution ® of Eq. (1.2) such that
D) = PDlye = o @)™, 0=1= 1.

In particular, if we put t = t;;1, i = j + 1, we have from Eq. (4.6) ®(tj41) =
Y;11 and

1Dti1) = Yigillpe = o(@)e " <.
This implies that
d,e(Yi1, R (X)) < e.
Hence, we have
Y1 € RY(Xy) + €B.
Thus Eq. (4.4) holds for all j = 0, 1,2...N. This completes the proof of (i).
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(i) The values of x— P(x)(7n, &) are now assumed to be convex. Thus
Theorem (3.1) can be applied.

Let @() € SD(X,) such that its matrix elements (1, P()&) = D e(-) €
C'[0, T], for each pair of n, £ € L.

By Theorem (3.1), any (iD(-) € SD(X,) can be approximated to any degree of
accuracy by ®(-). Consequently, to prove Eq. (4.2), it is sufficient to show that

7 \V
(n,®(T)¢) € ]\lli_rgoinf (1 + NP> Xo)(m, §).

Denote by Q, the range of ®(-), i.e
O={x:x=®@1), r€][0,T]}

and choose 6 > 0 so that

QO+ 6BCN.

Let K, ¢ be Lipschitz constants for the map P on Q + 60B. For each integer N,
h =§, tj=jh,j=1,2...N, define

ex e = SUD m, @108 — (0, P1)é) _d
Nong j=0,1,...N h dt

<77a q)(t)§>|t=tj . 4.7

Since (1, ®(-)¢) is continuously differentiable on [0, T, €y ¢ — 0 as N — oo.
Assuming that N is large enough so that

0K ¢
8N;q§ < eanT 1 )

then it can be shown that

N
(n, D) € (1 + ;P> Xo)(m, & + %(ew - DB, 9. (4.8)
né

To prove Eq. (4.8), we proceed by letting Yy = Xy so that

Y”’]‘fﬂ = <”I> YO@ = <’T]7X0§>

and
d
Uneo = E<n7 (I)(t)§>|t:toa My=0€R.

Having chosen

Yoej =0, Y€, Ungj=(n,U;&
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for some U, Y; € .Zl, let

Yogjer = (0, Y;8) + him, U;9),
where

Yj+1 = Yj+l’lUj,

(d
U'l’]§j+l = proj (dt<na ¢(t)§>|t:tj+17 P(YjJrl)(na f))

and

M =1+ Ky:h)M; + 1.
We note that

M = Mj+

for each j and therefore by Lemma (2.2) (with R = 1, § = 1 + K,:h) we have

(A +Kyeh)V = 1)) = L(eKvéT —1). (4.9)

M fr—
N7 Kopeh Kyéh

Inductively, suppose for 0 = j < N, the estimate
1Y; — ®@t)llne = hey M, (4.10)

holds. When j = 0, Eq. (4.10) is trivial as Yy = ®(0).
We have from Eq. (4.9) that

€
hey qeMj = 208 (Knl — 1) < ¢
Kong

by the choice of N.
Hence Eq. (4.10) implies that

Y, € 0+ 0B,
since Q consists of elements in the range of ®(-) and

B={x:|xll,; =1} C A



uﬁlil MARCEL DEKKER, INC. ¢ 270 MADISON AVENUE « NEW YORK, NY 10016
™

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Quantum Stochastic Differential Inclusions 539

By the Lipschitz property of P on Q + 6B and the choice of U, ;, we have
d
m,U;é) — E(n, PNO)—,;| = p(P(Y))(n, O, P(D(t))(n, §)

= KyellY; = @l e
= Kpehe e v M; 4.11)

by Eq. (4.10).
Therefore,

d
| Gnomel

d
o 0wo g sl - (100,00

Shey meMj+ K eh ey meM+hey g,
by (4.10) (4.11) and (4.7)

=hennel(1+Kpeh)Mi+11=hen neMjp.
Hence
NYjs1 — Pj)lne = hen qeMjt.
The estimate (4.10) holds for j+1.
When j = N, Eq. (4.10) combined with Eq. (4.9) leads to
{n, Yn& — (n, (D& = [|Yy — P(D)ll e
_ SN_ﬂ'lf.(eK,,gT T (4.12)

an

By the choice of ¥}, j = 0,1,2...N, (n, Yyé) lies in (I + %P)N(XO)(n, b so
that Eq. (4.8) follows directly from Eq. (4.12).
By letting N — o0 in Eq. (4.8), the conclusion (4.2) follows.

The exponential formula is recorded in the next Corollary as an
immediate consequence of Theorem 4.3.
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Corollary 4.4. Suppose that N' C A is open and P is locally Lipschitzian on

N with nonempty, compact and convex values. Then for any Xo € N, and
0=T=T, we have

T N
RV (Xo)(n, ) = lim <I + NP) Xo)(m, §).

The next Corollary indicates that the interval [0, T] may be partitioned in an
arbitrary manner provided that the width of the largest subinterval goes to
zero. To this end, we need the following definitions.

If D= {t,t,....ty} 1is a patition of [0,7T] (that is
to <t <t <ty=T), define

Dl = sup |tj4 — 1l
0=/=N—-1

If {Pap, j};.V: , is a collection of multifunctions Pg ; : .;l—>2;‘, define the
multifunction product by

(I Pap )(x) = (Papn°Papn-1° - -Pap, ().

For m, £ € E, this leads to the definition of the sesquilinear form:

(I, P)(x)(m, &) = (m, (ILL Pag )(x)).

Corollary 4.5. Suppose that N and P are as in Corollary 4.4 and let
Xo EN,0=T < Tandn, &€ L. Then for any sequence of partitions Dy =
{th & .. .tka} of [0, T with |Di| — 0 as k — oo, we have

RO Xo)(n, & = Im(IE% (U + (1, = (HP)Xo)(n, ).

Proof. Follows similar steps as in the proof of Theorem 4.3 by replacing / by
B = — it O
J J

j+1



u)ﬁlil MARCEL DEKKER, INC. ¢ 270 MADISON AVENUE « NEW YORK, NY 10016

™

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Quantum Stochastic Differential Inclusions 541
The Nonautonomous Case

Theorem 4.3 has its generalization to the nonautonomous version of
Eq. (1.2) as follows. We consider the initial time o = O as usual. Let A/ be
open in A. Assume that for each pair 1, £ € E, (¢t,x) € [0,T] XN, the
multifunction P(¢, x)(n, £) is compact and convex in C such that 7 — P(,x) X
(m, & is continuous on [0, 00) and x — P(¢, x)(n, &) is locally Lipschitzian on N’
independent of ¢ € [0, T].

As in Theorem 4.3, we consider first, an equidistant time discretization of
the interval [0,7T] and in addition introduce the following notations. For
1, € E such_that n = e(a), £=e(B), we set Pug(t;,x) == Pupj(x) where
Pugj: A—2%and t; =jL j=1,2...N being an equidistant partition of the
interval [0, T']. Consequently, we have the following results.

Theorem 4.6 Suppose that the multifunction (t,x)— P(t,x)(n, &) satisfies
the above conditions. Then for all xo € N and 0 = T < T, we have

T
RDXo)(n, & = lim I, (1 + NPJ') Xo)(m, &), (4.13)
where

T T
=1 (1 +]T]Pj> Xo)(m, & =(n, ( =1 (1 +NPaB,/’> (X0)>§>

The proof of Theorem 4.6 is omitted since it involves a routine modification of
the proof of Theorem 4.3. The nonautonomous version of Corollary 4.5 is also
straightforward to establish.

Approximations of Reachable Set for the QSDI

Consider now the autonomous version of QSDI (1.2). Then the Euler
approximation to the reachable set in the case of equally spaced partition {z;}
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can be written as follows

RY:) = +hP)Y0)(n, O
RY:o = (I +hPY(Yo)(n, O

'q§l (I + hP) (YO)(n7 g)

where the power of (I + hP) is that of composition of set valued map
described in Section 4. Then, by Theorem (4.3) and Corollary (4.4) RY nEN will
converge to R (Xo)(n, € in the sense that

T N
R (Xo)(n, § = lim (1 + NP) Xo)(n, §)

provided that the conditions of the Theorem are satisfied.
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LAGRANGIAN QUADRATURE SCHEMES FOR COMPUTING
WEAK SOLUTIONS OF QUANTUM STOCHASTIC DIFFERENTIAL
EQUATIONS*

E. O. AYOOLAT

Abstract. Lagrangian quadrature schemes for computing weak solutions of Lipschitzian quan-
tum stochastic differential equations are introduced and studied. This is accomplished within the
framework of the Hudson—Parthasarathy formulation of quantum stochastic calculus and subject to
matrix elements of solution being sufficiently differentiable. Results concerning convergence of these
schemes in the topology of the locally convex space of solution are presented. Numerical examples
are given.

Key words. quantum stochastic differential equations, Boson Fock spaces, exponential vectors,
sesquilinear form valued maps, Lagrangian quadrature, error estimates
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1. Introduction. There have been intense research activities in the development
of numerical schemes for solving classical stochastic differential equations of the form

AX (£, w) = H(t, X)dt + F(t, X)dQ(t),
(11) X(to) = XO) te [t07T]7

where the driving process Q(t) is a martingale and H, F are sufficiently smooth,
deterministic, and ordinary functions. Each of the schemes exhibits specific features
depending on the driving process and the solution space of (1.1) (see [14, 16, 18, 19,
27, 28, 31, 37]).

A noncommutative generalization of (1.1) is the following quantum stochastic
differential equation introduced by Hudson and Parthasarathy [13]:

dX(t) = E(t, X (t))d Ax () + F(t, X(t))dAF (1)
(1.2) +G(t, X (£))dA,(t) + H(t, X (t))dt,
X(tg) = Xo, almost all t € [tg, T].

In (1.2), the coefficients E, F, G, H lie in a certain class of stochastic processes for
which quantum stochastic integrals against the gauge, creation, and annihilation pro-
cesses Ag, AJfr, Ay and the Lebesgue measure are defined. These integrator processes
are formally defined in the next section. Equation (1.2) involves unbounded linear
operators on a Hilbert space.

It is important to emphasize that several benefits have been achieved by interpret-
ing standard probability in a noncommutative quantum setting. Such benefits include
a better understanding of classical stochastic flows and of some parts of Wiener space
analysis and Wiener chaos expansions, which have recently been renewed through a
fundamental discovery of the chaotic representation property of the Azema martin-
gales (see Meyer [17]).

*Received by the editors June 14, 1999; accepted for publication (in revised form) August 21,
2001; published electronically January 30, 2002.
http://www.siam.org/journals/sinum/39-6/35731.html
tDepartment of Mathematics, University of Ibadan, Ibadan, Nigeria (uimath@mail.skannet.com).
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Quantum stochastic differential equations of the type (1.2) often arise as math-
ematical models which describe, among other things, quantum dynamical systems
and several physical problems in quantum stochastic control theory and quantum
stochastic evolutions (see, for example, [5, 6, 7, 10, 11, 13, 34, 35, 36]). Approximate
solutions of these models are imperative since analytical solutions are often difficult
to obtain in practice. In addition, (1.2) reduces to the classical Tto stochastic dif-
ferential equation (1.1) by a suitable choice of parameters in a simple Fock space.
In this case, the Ito process is regarded as a multiplication operator-valued process.
In general, quantum stochastic differential equations have undergone rapid analyti-
cal developments without corresponding developments in their numerical analysis (cf.
[3, 5, 6, 7,9, 11, 12, 13, 23, 24, 33]).

In the work of Ekhaguere [5], (1.2) has been reformulated in the following equiv-
alent form:

& X(08) = Pt X(0)(0,),

(13) X(to) = Xo, te [to,T],

which is an ordinary differential equation of nonclassical type. The solution stochastic
process X () is a densely defined linear operator on some tensor product of two Hilbert
spaces, one of which is the Boson Fock space; 7, £ lie in a dense subset of the tensor
product Hilbert space and (n, X (t)£) is the inner product of the elements i and X (¢)¢&
in the space. The map (n,&) — P(t,X)(n, &) is a sesquilinear form for fixed (¢, X).
For processes which leave their domain invariant and for any positive integer m, the
mth power X™(t) of the unknown process is understood in the sense of composition
of the operator X (t) with itself m times. However, our considerations in this work
concern (1.2) involving the unknown process of degree m = 1.

In this paper we study techniques based on Lagrangian quadrature, which can be
applied for computing weak solutions of the quantum stochastic differential equation
(1.2). By imposing the conditions that a choice of nodes should force the Lagrangian
interpolating projection to yield a best approximation in a suitable norm, the criterion
for the quadrature algorithm is derived.

As a special case of (1.2), our present work may be used to obtain discrete ap-
proximate solutions, in the weak sense, of a class of the quantum stochastic evolution
equation

(14)  X() = X(to) + / t X(8)[L1dA(s) + LodA(s) + L3dA* (s) + Lads),

considered in [13, 32], where A(t), A(t), AT (t), respectively, the gauge, annihilation,
and creation processes of strengths m = g = f =I and L;, j = 1,2---4, are opera-
tors defined on the initial space. As highlighted in [13], the unitary solutions of the
evolution equations generate uniformly continuous semigroups of completely positive
maps. Consequently, our schemes may be used in the integration of irreversible equa-
tion of motion described by such semigroups. These concepts as well as applications
to quantum theory of open systems and heat baths will be addressed elsewhere.

The quadrature method may also be used to generate approximations of the
expected value of solution of (1.1). We present an example for the linear case. Exten-
sion of our work to the case of nonlinear stochastic differential equations will definitely
involve a certain class of quantum stochastic processes which leave their domain in-
variant. This issue will be addressed in our subsequent papers.
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An important feature of quadrature methods is that the nodal points in the inter-
val of integration need not be equidistant. The schemes here involve less complicated
analysis, and the order of convergence is independent of some approximation proce-
dures similar to those based on stochastic Taylor expansions for real valued processes
as obtained in the numerical solution of (1.1) (see, for example, [14, 18, 37]). Another
important feature concerns implementations. Computations of the discrete values of
the matrix elements of solution are carried out directly as obtained in the implemen-
tations of discrete schemes for solving initial value problems for ordinary differential
equations. This is an advantage compared with the implementation of discrete Taylor
schemes for simulations of sample paths and functionals of the solution of stochastic
differential equation (1.1), where the random increments of the driving process have
to be computed by a random number generator. We do not have a uniform tightness
type of requirement or a correction term in the limit as in the case of the Wong—Zakai
approximation of the noise terms in the classical setting (see [14, 18, 31, 37]).

There are many other interesting motivations for studying quadrature solutions
of deterministic ordinary and partial differential equations. For an account of these
and some limitations of the methods, we refer the reader to [4, 20, 21, 22]. In these
references, quadrature methods have been applied to ordinary and partial differential
equations. In general, the quadrature method is a fast and efficient method involving
substantial savings in computational efforts for a suitable value of the total nodal
points N.

Under an appropriate optimality condition, the Lagrangian quadrature transforms
the quantum stochastic differential equation to purely algebraic equations in terms
of the nodal values only. Since common stochastic processes are not differentiable in
the classical sense, quadrature method cannot be applied directly to solve ordinary
stochastic differential equations with respect to weak convergence criteria. We are able
to apply this method by considering the equivalent form of the quantum analogue of
these equations. This yields a benefit of quantization of ordinary stochastic differential
equations.

Since the ordinary differential equation (1.3) is of a nonclassical type, stability
analysis is much more complicated compared with the classical initial value problems.
In subsequent papers, we will examine the stability of the quadrature schemes.

The rest of the paper is organized as follows: In section 2, we outline some
fundamental definitions, notations, and structures that are foundations of the Boson
Fock space stochastic calculus employed in what follows. These are adopted from
[5]. Section 3 is devoted to the derivation of the Lagrangian quadrature appropriate
for quantum stochastic differential equations under some optimality conditions. In
section 4, we describe the procedures for choosing the Lagrangian interpolants and
the computation of quadrature coefficients. The establishment of bounds for the local
and global discretization error is done in section 5. Some examples of (2.2) and results
of numerical experiments are reported in section 6. In comparison with the accuracy
of the Euler and a 2-step scheme employed in [2] to solve the same model problem
considered in Example 2, it is discovered that the Lagrangian quadrature scheme
produced better results and that numerical values of the matrix elements of solution
depend on the chosen exponential vectors.

2. Preliminaries. Let D be an inner product space and H be the completion
of D. We denote by LT (D, H) the set of all linear maps X from D into H such that
Dom[X*] D D, where X* is the adjoint of X. We remark that L* (D, H) is a linear
space under the usual notions of addition and scalar multiplication of operators.
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If H is a Hilbert space, we denote by I'(H) the Boson Fock space determined by
H. For f € H, e(f) denotes the exponential vector in I'(H) corresponding to f. We
remark here that the subspace E of I'(H) generated by the set of exponential vectors
in I'(H) is dense in I'(H). Since the exponential vectors are linearly independent, an
operator with domain E is well defined by specifying its action on e(f), f € H. For
other properties enjoyed by the exponential vectors and Boson Fock space, we refer
the reader to [1, 5, 17, 23, 24].
In what follows, D is some inner product space with R as its completion, and Y
is some fixed Hilbert space:
(i) For each t € Ry, we write L2-(Ry) (resp., L3-([0,t)); resp., L3-([t,00))) for
the Hilbert spaces of square integrable, Y-valued maps on [0, c0) (resp., [0,1);
resp., [t,00)).

(ii) The noncommutative stochastic processes which we shall discuss are densely
defined linear operators on R®@T'(L% (R4 )); the inner product of this complex
Hilbert space will be denoted by (-,-) and its norm by || - ||.

(iii) Let E,E;, and Ef ¢t > 0, be the linear spaces generated by the exponential
vectors in I'(LZ (Ry)), (L% ([0,1))), and T'(L% ([t, o0))), respectively; then we
introduce the following spaces:

(a) A= L*(DZE, R ® (L3 (R,)),
(b) Ay = LT (DR, R @ (L} ([0,1)))) ® 17,
(c) A'=1,® LT(DQE', R @ ['(L([t,00)))),t > 0,
where ® denotes algebraic tensor product and 1; (resp., 1!) denotes the iden-
tity map on R ® T'(L$([0,1))) (resp., T(L2([t,00)))), ¢ > 0.
We note that A* and A;,t > 0, may be naturally identified with subspaces of A.
For 1, € DRE, we define || - ||,e on A by |z|,e = [(n,2€)],z € A. Then
{I - e, m, & € DRE} is a family of seminorms on A; we write 7y for the locally
convex Hausdorff topology on A determined by this family. We denote by A, A;, and
At the completions of the locally convex topological spaces (A, 7w), (As, i), and

(A%, 7w ), t > 0, respectively. The net {At :t € Ry} is a filtration of A.

2.1. Boson quantum stochastic integration. Before defining the quantum
stochastic integral employed in the subsequent sections, we present a number of im-
portant notations and definitions.

Let I C Ry ; then we have the following:

(i) Amap X : [ — A is called a stochastic process indexed by 1.

(ii) A stochastic process X is called adapted if X (t) € A, for each t € I. We

denote by Ad(A) the set of all adapted stochastic processes indexed by I.

(iii) A member X of Ad(A) is called
(a) weakly absolutely continuous if the map ¢t — (n, X (¥)¢), t € I, is ab-
solutely continuous for arbitrary 7, ¢ € DQE.—we denote this subset of

Ad(A) by Ad(A)yac;

(b) locally absolutely p-integrable if || X ()|}, is Lebesgue measurable and

integrable on [tg,t) C I for each ¢ € I, p € (0,00) and arbitrary n,§ €

D®E.—we denote this subset of Ad(A) by L} (A).

Stochastic integrators. Let B(Y') denote the Banach space of bounded endo-
morphisms of ¥ and let the spaces Lg%, .(Ry) (resp., L3y ,.(R4)) be the linear
space of all measurable, locally bounded functions from R, to Y (resp., to B(Y)).
If f e L§,.(Ry) and m € Ly ,,.(Ry), then 7f is the member of L§,.(Ry)

given by (mf)(t) = m(t)f(t), t € Ry. For f € L3(R;) and 7 € L vy 10e R+,
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we define the operators a(f), a™(f), and A(w) in LT(D,T(L%(Ry))) as follows:
a(f)e(9) = (f,9)12 @) €(9) a* (f)elg) = Fhelg+of)lo=o, A(m)e(g) = Fhe(e”™ f)lo=o
for g € L3 (Ry). These operators give rise to the operator-valued maps Ay, A?, and
Ar defined by Af(t) = a(fX[O,t))v A?(t) = a’+(fX[0,t))7 /\ﬂ‘(t) = A(WX[O,t))a te RJra
where x; denotes the indicator function of the Borel set I C R,..

The operators a(f), at(f), and \(w) are the annihilation, creation, and gauge
operators of quantum field theory, respectively. The maps Af,A;f, and A, are
stochastic processes, called the annihilation, creation, and gauge processes, respec-
tively, when their values are identified with their ampliations on R&T(L% (Ry));
ie., for any r € {Af,Aj{,/\w} and n = ¢ ® e(a), with o € L3 (Ry), ¢ € R, then
r(t)(c®e(a)) =r(t)c®e(a).

These are the stochastic integrators in the Hudson and Parthasarathy [13] for-
mulation of Boson quantum stochastic integration which we adopt in the rest of this
paper. Next we present the definition of the stochastic integrals, beginning with
simple stochastic processes.

A stochastic process p € Ad(/i) is called simple if there exists an increasing
sequence t,,n =0,1,2,..., with ¢, = 0 and ¢, — oo such that for each n > 0, p(t) =
p(tn) for t € [tn,tny1). Let p,q u,v € Ad(A) be simple adapted stochastic processes
and let f,g € L§,.(R4) and m € Ly ;,.(R4). Then the family of operators M =

{M(t):t>0} in Ad(A) defined by
M(0) =0,
M(t) = M(tn) + p(tn) (Ax(t) = Ax(tn)) + q(tn) (A (t) — Af(tn))
+ u(tn)(A:;(t) - A;(tn)) + U(tn)(t - tn)a by <t <tlpnt1,

is called the stochastic integral of p,q,u,v with respect to A, Ay, A;r, and the
Lebesgue measure. It is understood in integral form by

t
M(t) = / (p(s)d Ar (s) +q(s)dAs(s) + u(s)dA;r(s) + v(s)ds)
0
and denoted in differential form as

M(0) =0,
dM(t) = p(t)d Nx (t) + q(t)dAf(t) + u(t)dAS (t) + v(t)dt.

Next we state the first fundamental result due to Hudson and Parthasarathy [13]
concerning quantum stochastic integrals of simple and adapted processes. In what
follows the inner product of the space Y is denoted by (-, -)y.

THEOREM 2.1.

(a) Let p,q,u, v be simple processes in Ad(A) and let M be their stochastic integral.
Ifn,§ € DRE withn=c®@e(a), { =d®e(B),c,d €D, a,p € LF,,.(Ry), and t > 0,
then

t
0
(2.1) +{a(s), g(s))yuls) +v(s)})ds.

(b) The result in (a) above remains true if for each integrand F € {p,q,u,v} the
map t — F(t)€ is measurable and satisfies

{n, M(t)¢) = / (n, {{als), m(s)B(s))yp(s) + (f(s), B(s))va(s)

t
/ |F(s)]|?ds <00 Vt>0 and V&€ DQE.
0
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Extension of the stochastic integral above to integrands in L7, (A) requires esti-
mates of the integral in the family of seminorms {| - ||,¢,7,£ € DQE} that generates
the topology of A. First, we have the following proposition (Proposition 3.2 in [13]),
which is useful in extending Theorem 2.1 to integrands in L7 (A).

PROPOSITION 2.2. Let p € Lloc(.,zl). Then there exists a sequence p™, n =
1,2,..., of simple adapted processes such that for each t > 0 and for arbitrary n,§& €
DSE, T oo J; [p(5) — p™) (5)][2¢ds = 0.

Next we present the following result which can be easily proved by applying
Theorem 2.1.

PROPOSITION 2.3. Assume that the following hold:

() p, q,u v are simple processes in Ad(A).

fo $)d Ay (s) + q(s)dAs(s) + u(s)dA;r(s) +v(s)ds)
for each te [0 T] T > 0.
For arbitrary n,§ € DRE withn = c®e(a), { =d®e(B), c,d €D, o, B € LF,.(Ry),
let Kpe T be given by

Kyer = sup max{{a(s),(s)B(s))l, [{(s),8(s))]; [als),g(s)), 1};

0<s<T

then

M @)l < Kn,e,T/O o)l + lla(s)llne + llus)llne + [lv(s)llnelds

loc(A)'
Then by Proposition 2.2, there exist simple adapted processes pp, ¢n, Un, v, Which
approximate p, q, u, v in L2 (A). We now let

loc

Extension of the quantum stochastic integral. Let p, ¢, u, v be elements of L?

M, (t) = /0 (Pn(8)d Ar (8) + gn(s)dAf(s) + un(s)dA;(s) + vp(8)ds).

Applying the estimate of Proposition 2.3 to the difference M, (t) — M,,,(t), m,n € N,
we find that the sequence { M, (t)} is a Cauchy sequence in A and therefore converges
to a limit in A by the completeness of the locally convex space. The limit M (t) is
independent of the choice of approximating sequences and is defined to be the integral

M(t) = /0 (p()d Ax () + q(s)dAS(s) + u(s)dAF (s) + v(s)ds).

By employing the uniformity of the convergence on finite intervals, we may pass to
the limit of approximations by simple processes, so that Theorem 2.1 for coefficients
. ¢, u,v belonging to L}, (A) remains valid.

Some fundamental notations and definitions.

(a) We denote the space of sesquilinear forms on DRE by sesq[DRE]. Thus,
sesqDRE] = {a : DQE x DRE — C| the map (n,£) — a(n, &) is linear in ¢ and
conjugate linear in n V n, & € DRQE}.

(b) A stochastic process ® will be called locally absolutely p-integrable if the map
t — || ®(t)|le, t € Ry, lies in LY (I) for arbitrary n,£ € DRQE and p € (0,00).

(c) For p € (0,00) and I C R, L” (Ix.A) denotes the set of maps & : Ix.A —

~ loc
A, such that the map t — ®(t, X(t)) lies in L _(A) for every X € L? (A).

loc
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In what follows, f,g € L$%,.(Ry), 7€ LE v 1oc(R4), 1 is the identity map on

R @ T(LY (Ry)). We introduce the processes Ay, Af,
integrators. ~ ~

(d) Let E,F,G,H € L? (I x A) and (t9, Xo) be a fixed point of I x A. Then a
relation of the form

Ar,and s — s1, s € Ry as

X(t)=Xo+ / (E(s,X(s))d A (s)+ F(s,X(s))dAf(s)

to
(2.2) + G(s,X(s))dA} (s) + H(s, X (s))ds), tel,
will be called a stochastic integral equation with coefficients E, F, G, H and initial
data (to,Xo) if X(to) = Xo.
As an abbreviation we shall sometimes write the foregoing equation as follows:

dX(t) =E(t, X (t))d Ar (t) + F(t, X ()dAs(t) + G(¢, X(t))dA;L(t) + H(t, X(¢))dt
X(tg) = Xo, almost all ¢t e I.

We refer to this as a stochastic differential equation with coefficients E, F', G, H and
initial data (to, Xo).

By a solution of the equation, we mean a weakly absolutely continuous stochastic
process ¢ € L _(A) such that

loc
dp(t) = E(t, ¢(t))d Ax (t) + F(t, 6(t))dAs(t) + G(t, ¢(t))dA; (t) + H(t, ¢(t))dt,
od(to) = Xo, almost all ¢ € I.

(e) If @ is a map from I x A into sesq[DRE], then for (t,z) € I x A, the value of
D(t,z) at n,£ € DRQE will be denoted by ®(t, z)(n, ).
Such a map will be called Lipschitzian if for arbitrary n,¢ € DQE,

@ (t,2)(n,€) — @(t,y)(n,€)] < Kye(t) & — yllne

Va,y € A and almost all ¢ in I for some locally integrable functions K. fg(t) on I. ® will

be called continuous if the map (¢, z) — ®(t,z)(n,€) from I x A to C is continuous.
(f) Unless otherwise stated, E, F, G, H lie in L? (I x A) and let (t, o) be
a fixed point of I x A. For 1,6 € DQE, with = ¢ ® e(a) and € = d ® e(3), we
define fiag, Vs 0a i T — C by prag = (a(t), 7B}y, 75(t) = (F(E), B(D)y,
oult) = (a(t), g(0))y, teT. )
To these functions, we associate the maps pFE, vF, oG, P from I x A into the
set of sesquilinear forms on DRE defined by

(LE)(t,2)(n,§) = (1, pap () E(t, ©)E),
(vF)(t, ) (n,€) = (n, (1) F(t, 2)€),
(0G)(t,2)(n, &) = (n,0a(t)G(t,2)E),
P(t,x)(n,§) = (nE)(t, 2)(n,&) + (vF) (¢, ) (1, €) + (0G)(t, z)(n,§)

(2.3) + H(t,2)(n, ),

n,& € DRE, (t,x) € I x A, where H(t,z)(n,€) := (n, H(t, z)€).

The map P is known to have Lipschitz and continuity properties depending on
such properties of the coefficients of (2.2). Furthermore, it has been established that
if the coefficients F, F, G, H appearing in (2.2) belong to L2 (I x A), then (2.2) is

loc
equivalent to (1.3). If, in addition, the coefficients are Lipschitzian, then for any fixed

point (tg, Xo) of I x A, the existence and uniqueness of a solution ® € Ad(A)yq. of
(2.2) are assured (see [1, 2, 5]).
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3. Lagrangian quadrature. Since the existence results hold with the general
Caratheodory conditions, we assume the following conditions in what follows:
(a) The map (t,X) — P(t,X)(n,€) of I x A to C is continuous for arbitrary
1,¢ € DQE.
(b) P is Lipschitzian with continuous Lipschitz function Kgg(t) on [ty,T] = 1,
for n, ¢ € DRE.
(¢) The unique exact solution X (¢) of (1.3) is such that the map t — (n, X (¢)¢§) :=
Xe(t) is of class C*(I) for arbitrary n,¢ € DQE.
Suppose that t1,t9,13,...,tx are N distinct points of [tg, T'] for some positive integer
N. Then we seek an interpolating approximation to the value X (t) of the exact
solution in the form

N
(3.1) X(1) 2 Ly(t)X(t),

p=1
where

N
(32) Lp(t):H[(titk)/(tpftk)L p:132a"'aNa t#tp
=Tn(t)/[(t —tp) T (tp)],

and

Tn(t) = (t —t1)(t —ta) - (t — tn).

We define the quadrature coefficient aglz) by
dam n
(3.3) T Lt = ally.

At the nodes t,, p = 1,2,..., N, the Lagrangian interpolants satisfy Ly (t,) =
a;?{) = 0Opk, where Oy is the Kronecker delta. This remains true under any linear
transformation ¢ = au + b. In most applications, we shall require the transformation
of the interval I = [t, T| of ¢ into, say, the usually convenient interval [—1, 1] of u by
writing u = [2¢t = T — to] /(T — to).

The following lemma, which is due to Olaofe [20, 21], will be useful in what
follows.

LEMMA 3.1.

9]
%Lp(t) = —aﬁ,llz,Lm(t), where

alt) = Ll (tm).

We shall write X (t,,) for the value of the exact solution X (¢) at ¢, and X, as
its approximate value at t,. For nonnodal point ¢ € [to, T, we shall write X, for the
approximate value of X (¢). The global error at t,, is given by ||ep|lne = || X (tp) — Xp|lne
and the local error at any point t is given by |le|l,e = [| X (t) — X¢||ne for arbitrary
1, € DRE.
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Ordinarily, (3.1) may be used to interpolate (n, X (¢)§) when (n, X (¢,)§) are given
forp=1,2,..., N. During computation, X, approximates X (¢,) so that (3.1) becomes

(n, X(t)§) = Z Ly (t)(n, Xp§)-

DEFINITION 3.2. Let L, R : Nx A — sesq[DRE]; then the numbers |L(N, X (t))(n, €)]
and |R(N,X(t))(n,&)| are called local truncation error and round-off error, respec-
tively, if the exact representation for (n, X (t)§) is given by

N

(3-4) (m, X ()€) = > Ly(t)(m, X (,)€) + LN, X (1)) (1, €)

p=1

and the computed representation by

(n, X6) = ZL X,€) + RN, X (1)) (n, ).

The complex valued map Xpe @ [to, T] — C is defined by X,e(t) = (n, X (t)§) for
arbitrary n, £ € DRRE, where X (t) is the exact solution of problem (1.3).
Putting (n, X (¢)€) — (n, X:&) = (n, e:&), the global error ||e;||,c satisfies

lletllne < Z [ Lp(@)lllepllne + [LIN, X () (n, )| + [R(N, X (£)) (1, £)]-

At the nodal point ¢, L(N, X (tx))(n,£) = 0.

Next, we shall describe the notion of the Chebyshev minimax best approximation
of continuous complex valued functions.

Let Clto,T] denote the space of continuous complex valued functions on [tg, 7]
equipped with the uniform norm

[flloe = max [f(8)],  f € Clto, T].

[to,T]

For each positive integer N, let Uy denote the linear subspace of Cltg,T] consisting
of polynomials of degree at most N.
For f € C[tg, T], we define the distance from f to Uy by

dist(f,Un) = min [|f — vs-
ist(f, Un) = min [|f — o]

Then we refer to the element v € Uy as a best approximation of f if and only if
If = ulloo = dist(f, Un).

We now derive the quadrature algorithm which will ensure that the Lagrangian inter-
polating projection is a best approximation in the minimax sense for a suitable choice
of nodal points t1, to,...,tx in [to, T].

By the Chebyshev minimax theory, it is well known that for any real valued
continuous function f on [tg, 7] and for each positive integer N, there is a polynomial
Py of degree N which is the best approximation to f in the minimax sense.
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To this end, suitable points 1, ¢, ..., tx in [ty, T] can be found at which the error
function

Ry(t) = f(t) = Pn(t)

has alternate equal and opposite constant values (see, for example, Fox and Parker
[8], Powell [26]).
This condition holds if and only if

0

o, —[Rn®)]?>=0, j=12,...,N.

Consequently, we have the following result.
THEOREM 3.3. Let X (t) be the exact solution of problem (1.3) and letn,& € DQE.

Then for a suitable choice of nodesty, ta, ..., tn in [to, T|, the Lagrangian interpolating

projection Xpe(t) = 25:1 L,(t)Xne(tp) satisfies

L — dist(Xy¢,U
max | X Z ist(Xye, Un)

if and only if
Za“)X m=1,2,...,N,

for each nonnodal point t € [to,T] and Vn, ¢ € DRE.
Proof. For n,& € DRQE, we have from (3.4)

(3.5) [L(N, X () (n,€)| = :

N
)= Ly(t)(n, X (£p)€)

p=1

where L,(t) = Lp(t;ti,ta,...,tn) is defined by (3.2) and depends on the nodes
tp, p=1,2,...,N, for each t € [to,T]. We now put

(n, X(1)€) = Xye(t) = Une(t) + iVie (1)

for some real valued functions t — U, (t) and t — V,¢(t). Then we have

N
L(N, X (t))(n,§) = < ZL > +i <an(t) - ZLp(t)Vns(tp)> ;

so that

N 2 N 2
|L(N, X (1)) (n, §)]* = (Uni(t) - ZLp(t)Uné(tp)> + (Vné(t) - ZLp(t)Vns(tp)> :

p=1 p=1

Since the maps Uy¢(t) and V;¢(t) are continuous on [to, T'], by the Chebyshev minimax
theory maxp, ry [L(N, X (t))(n,&)| will be minimum for a suitable choice of nodes
tl,tQ, “ee ,tN if and only if

g IL(N, X(t))(n,6)>=0, m=1,2,...,N.

(3.6) B
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But
S| LN, X(0)(0: )
0 ? 9 N 2
9 < ZL ) + Dt (Vﬂﬁ(t) - ZLp(t)VnE(tp)>
N 5 X ’
- ( 2 L ) (—(%m ZLpu)Ung(tp))
P; a z;
(3.7) + < Z ) <_5t ZLp(t)Vﬁf(tp)> )
p=1 m p=1
=12,...,N.

Since |L(N, X (t))(n,&)| does not varnish identically, (3.7) is zero if and only if

ZL =0
p=1

771

and
N
—— ) Ly(t)Vye(ty) =0, m=1,2,...,N.
=1

These equations imply that

P N
(3.8) — g 2 Lo Xne(ty) = 0.

From (3.8) and in view of Lemma 3.1,

N N
[Z (;Lp(t)) Xne(tp) + Lp(t)ain(an(tp))] =0

t
p=1 m p=1

or

N
t) [Z alt) Xe(tp) — ng(tm)] =0.
p=1

Since L., (t) # 0, consequently we have

N
(3.9) ne(tm) = all) Xpe(ty), m=1,2,...,N. 0

Remark 3.4.
(i) Equation (3.9) when applied at each of the nodes transforms the quantum
stochastic differential equation (1.3) to a purely algebraic system given by

Zal)X P(tW’I?X(tm))(nag)v m:172737"'7N
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with initial condition transforming to

N
Z Lp(tO)XWE (tp) = Xvif(t0)~
p=1

(ii) If we write
Xné(t) = Un£<t) + iVnE(t)

and

P(t, X(1))(n,§) = Re[P(t, X(£))(n, §)] + dAm[P(t, X ())(n, )]

for some real valued functions ¢ — Upe(t), t — Vye(t), t — Re[P(t, X(2))(n,€)],
t — Im[P(¢t, X (¢))(n, £)], then the system of the algebraic equations in (i) above may
be written in two parts, real and imaginary, as follows:

ZamU = Re[P(tm: X (1)) (1,)]

N

Z Lp(tO)Unﬁ(tp) = Upe (to)

p=1

and

zamv = TPt X (1)) (1,))

N
> Lp(to)Vae(tp) = Voe(to), m=1,2,3,...,N

p=1

We observe that each of the systems of equations consists of N + 1 algebraic equations
in N unknowns. We shall discuss the methods of their solution in section 5.
(iii) The quadrature coefficients aS,iL defined by (3.3) satisfy

N
oy = >
k=1

Vg such that ¢ = 1,2,...,s — 1, with s < N (see [20, 21]).

The numerical solution of the systems in (i) and (ii) above is a simple task for
modern electronic computers. This is accomplished by using standard programs with
minimal computing time and storage for the N x N matrix [ag)}.

However, it is important to note that the computational complexity of Lagrange
polynomials is very large due to extreme number of multiplications and additions. In
practice, relatively low order quadrature is needed (that is, 3 < N < 15, say) so that
the total amount of storage and time needed on the computer is quite low.

Next, we present a corollary to the last theorem.

COROLLARY 3.5. Assume that for each pair of n,& € DRE the exact solution
X(t) of problem (1.3) is such that

Xye(r) € O tg, T], s=0,1,2,...;
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then the representation

satisfies

N
max | X9 (1) = 3 Ly() X[ (1) = dist(X,7, Uw)

if and only if

X(b-‘rl Za(erl

1847

Proof. Using the inner product form of (3.1), if X,¢(¢) is replaced by its derivative,

then by Theorem 3.3

N
%ZLP

p=1

is a best approximation of Xég (t) provided that

(3.10) Za(l)x’ m=1,2,...,N,

mp 776
where, by (3.9), we have

N
1
= Za;()k)Xnﬁ(tk)-
k=1

Substituting in (3.10) for X7.(t,), we have

N
a1 Z Xoe(tr)

k=1

0
Mz

1
775(

=
Il
-

al)al) )X71£(tk)

mp

Il
gL
M= 114

1)
@ikt X (1y).

I
] =

is]
I
-
£
I
-

Hence

nE

uMz
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where

(1) (1)
a(2) Z amiaép ,

by Remark 3.4(iii) above.
It follows in general that the representation

X2t }:L

is a best approximation of Xf?‘? (t) if and only if

s+1) (1) s)
Z amPXné
i.e., if and only if
X ZﬁWﬂX
where ¢ can take any values from 1 to s — 1, with s < N. 0

4. Lagrangian interpolants and computation of quadrature coefficients.
In this section, we compute the Lagrangian interpolants L,(t) and the quadrature co-

efficients a( ). These computations are independent of n, £ € DQE and are carried out
in the same manner as in the classical context. For several benefits of orthogonality,
we choose the set {L,(t)} to be orthogonal on the interval [to,T] with respect to the
weight function w(¢) = 1 as in [20, 21]. Consequently, the interval [to, T for ¢ may be
transformed to the appropriate interval [—1, 1] for u by the equation

2%t —T —to

YE T,

In this case, the product polynomial T (u) associated with L,(u) transformed to
u € [—1,1] is the Legendre polynomial Py (u) of degree N on [—1,1].

Consequently, we consider for the computation of the quadrature coefficients agf),
the case of the unit weight function in the interval [—1, 1] with the product polynomial
Tn(u) of L,(u) as the Legendre polynomial Py (u) of degree N.

Since a%i, = Ly (um) for uy, € [=1,1], m=1,2,..., N, it is easy to show that

Py (up)
4.1 all) = NP , pFq
() "l —u) Pyl D7
and
(4.2) a(l) P]/\/[(up) — Up
2P} (up) l—ug’
where

1 d
72NNJW@ﬁan, D= u € [—1,1].




QUADRATURE SCHEMES FOR QUANTUM EQUATIONS 1849

By considering the properties of Legendre polynomials (see [21, 29]), it can readily be
shown that

o — 0
pq N+1-p,N+1—gq"*

By using (4.1) and (4.2), the constants apq) for any value of N, say N = 3,4,...,15,
can be easily calculated. These values are then used as input data for a given problem
once N has been chosen.

5. Bounds for the local and global truncation errors, convergence, and
application to quantum stochastic differential equation. We first establish
the existence of a bound for the local truncation error by assuming some smoothness
conditions of the map t — (n, X (¢)¢) for each pair of 1, € DQE. We then use this
bound to show that |L(N, X (¢))(n,£)] — 0 as N — oo.

To this end, we assume that the maps (uE)(-, X(-))(n,€), (vF)(-, X())(n,&),
(@G)(-, X () (n, &), and H(:, X(-))(n, &) which define the map P(-, X(-))(n,§) in (2.3)
are of class CV~1[t, T to ensure that the map X,¢(-) is of class CN[tg, T).

THEOREM 5.1. Assume that X is the exact solution of problem (1.3) such that
Xe(+) is of class CN[to, T for each pair n,& € DQE and N, a positive integer. Then
the local truncation error L(N, X (t))(n, &) satisfies

X Oy &
G0 OXO)O] < max | =S L0
0, . =1
Proof. By (3.4) we have
N
L(N, X(t))(n,€) = ) =Y Lp(t)(n, X (1)6),
=1
N P
(5.2) = Xn& Z Lp nf
p=1

We now put
Xne(t) = Upe(t) + iVie(t),
where t — U,¢(t) and t — V,¢(t) are real valued functions for n,{ € D®E. Since

X¢(+) is of class CN[tg, T, then U,e(+) and V() are also of class CV[to, T7.
By Taylor’s theorem, we can write, for 0 <t <1,0< 6 < 1,

N—-1
tP
mw:24$u www

p=1

=3
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Substituting in (5.2), we get

¥ P9+ Lo + i Evo)+ v
- 1 ne N1 né ¢ [ /ng N1 ng
Jj=1 j=1
- IS B t /() g
=D Lo() | D U 0) + S50 (01)
p=1 j=1 ’
= S G . )
=iy Lp(t) | Y V2 (0) + 15 Ve (01)
p=1 j=1 ’
N—-1 tj ) N N—-1 tj )
_ J P J
- 7U71£ (0) - ZLP(t) Z ﬁUné (0)
Jj=1 p=1 j=1
N—-1 tj ) N N—-1 I )
T 7Vng (0) _ZLP(t) Z T; ng (0)
Jj=1 J p=1 j=1 J

N N

(V) L AN) 1 N (77(N)
+m (Ung (01) +iV,{] (Ht)) - L) (U,,E (th)
N'E Lyt Ve (0t,).

By the exactness theorem of Lagrangian interpolation formula (see Stroud [29]), the
last equation becomes

L(N, X(t))(n,€)

1

N N N . N
= ﬁtN[UéS)(Gt) +iV, D (01)] - ZL Nul(ot,) +iv,$Y (0t,)]

N
_1 N N) N (N)
(5.4) Il [t Xpe ' (0t) = E Ly(t)t) X, o' (0ty) | -

p=1

If we employ the integral form of the remainder in (5.3) we get
N (0 (0
Ul (
Z j! 715 ) +i Z !an
=0

(5.5) T /0 (t = )N YU () + iV () dr.
Using (5.5) in (3.4), we get

L(N, X(8))(n,€)
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N-1 5 N— . ‘
t . t 1 B
= U ) +i > TVrz(g)(O)ﬂLf./ (t =)V X (r)dr
= I — ! (N —1)!
Jj= j=
N N-1 44 N-—1
t )
E prr(d) py,(4)
ZLp(t) [ lUnf () + Z lvné (0)
p=1 §=0 j=0
N t
1 v 1 (V)
— L t/ t— ) N1 (g
<N—1>p§p“o( PNLX ()
t
! (t — )N XY (r)dr
(N =Dy né
N t
1 » S
5:6) —— S L) / t, — )N 1X D) (1,
(N —1)! pz:; L né

by the exactness of the Lagrangian interpolation formula for polynomials of degree
less than or equal to N — 1.

From (5.6), if we put r = ts, then

L(N, X(t))(n,€)
1
= (N—l)'/o (1- s)NfltNXy(]éV)(ts)ds

N 1
1 _
)

1 ! N al N
(N—1)'/0 (1—s)N- {tNX( N(ts) = Y Lty X\ (¢, s)}d

Now by (5.4)

N
NIL(N, X (£))(n,€) = ltNX(N (ts) = Y Lyt X\ (¢ s)],
p=1
where 0 < s =0 < 1.
Hence, on account of (5.6),
L(N, X(t))(n,€)
= (Ni o/, (t T)Nleéév)(r)dr
1 = ! N—1y(N)
TN 1) ZLP(t)/O (tp —m) 7 X, (r)dr
ot
1 te
p=1 ¢
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N
:——X W01 3 Lyt)(t — )N
p=1

Therefore

N
tN =Lty

p=1

LN X)) < 37 [ max HX@?’@)

] |

Consequently, |L(N,X(t))(n,§)] — 0 as N — oo for arbitrary 7,{ € DQE and
L(N, X(t))(n,§) =0, k=1,2,....N. o

Remark 5.2.

(i) Upon application of (3.9) at each of the N nodes to (1.3), the following system
of difference equations is obtained:

(5.7) Za D Xoe(tp) = Pltm, X(tm))(n,6), m=1,2,...,N.

The initial condition yields the quadrature equation

(5.8) X (to) ZL t0) X (t

Equations (5.7) and (5.8) lead to a system of N + 1 equations in N unknown approx-
imate nodal values X,¢,, p=1,2,..., N, which are to be determined.

It has been shown (see Olaofe [20, 21]) that the rank of the N x N matrix [a, (1 )] is
exactly N — 1. The matrix is singular. Hence (5.8) is chosen together with any N -1
equations of (5.7). The remaining Nth equation of (5.7) is regarded as superfluous.
Since the remaining equation must also be satisfied by the computed solutions, the
measure of accuracy of the numerical result is given by the residual

(59) Tﬁf Zarp Xﬂﬁp (tﬁX(tT))(naf)

at the superfluous node t = t,..

The superfluous error equation (5.9) is a practical method of estimating the ac-
curacy of the numerical solution given by the Lagrangian quadrature method.

(ii) By Definition 3.2 above, the global error ||e;||,c satisfies

lleallne < Z [ Lp@)llepllne + |LIN, X (£))(n, E) + [R(N, X (2)) (1, €)]-

If we now put
67}5 = max{HepHng, p= 17 27 .. 7N}7
then by inequality (5.1)

lledllne

1
< ene 3 |Ly(t)] + 77 max [X;f!)(m

| max + RO, X(0) (0,6
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By continuity of the Lagrangian interpolant, the first term above is bounded. The
global error increases due to truncation error, as well as due to round-off error. The
truncation error decreases as N increases. The actual behavior of the round-off er-
ror will be determined in the investigation of numerical stability of the quadrature
method.

6. Examples of quantum stochastic differential equations and numeri-
cal experiments. We first present some examples of the quantum stochastic integral
equation (2.2) which satisfy the Lipschitz condition in the sense of this paper.

(a) Consider

X(t) =1+ /0 ((L(3)X () + Xexp[pA(s) + qA™ (s) + 7s])dA(s)
(6.1) + U(5)X(5)dA(s) + V(s) X (s)dAT(s) + (Z(5) X (s) + Q(s))ds), te0,7],
where

A(t) = Ap(t), AT(t) = AF(1), Ax(t) = A1),

fy=gt)=n(t)=1, R=Y =C.

L, U, V, Z are continuous complex valued functions on [0,7], Q : [0,T] — Ais an
adapted process and A\, p, ¢, r are complex constants.
Consequently,

R@T(L3(Ry)) = T(L5(Ry))
and
DQE = E, A= LY(E,T(L3(Ry))).
The coefficients

E(t,X(t)) = L(t) X (t) + Aexp(pA(t) + qA™ (t) + rt),

F(t, X(1) =U@)X(t), Gt X(t)=V(E)X(1),

H(t, X (1) = 2(0)X (1) +Q(1),  X(t) € A,
are Lipschitzian with Lipschitz functions
Koe(t) = L)), Kpe(t) = U@, Kg(t)=|V(H)l, Kit)=I|Z@),
respectively. That is, for each M € {E, F, G, H}
1M (,2) = M(ty)llne < Kpf (@)llz —ylle,  z,y€A

and belongs to L7 _([0,T] x A) for X € L? (A).
For A =0, Q(t) = 0, the existence, uniqueness, and the conditions for the solution

of (6.1) to be unitary in the strong topology are well known (see, for example, Hudson

[11]).
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However, our present work is useful for computations of discrete approximations
of the solution in the weak sense.

For 7, ¢ € E, such that n = e(a), £ =e(8), o, 3 € L (Ry), (6.1) is equivalent to
the initial value problem

&, X(0) = Pt X(0)(n.),

(6.2) X(tg) =1, t€[0,1],
where, by (2.3),

P(t, X (1)) (n, €) = [@@)B()L(t) + B(H)U(t) + at)V(t) + Z ()|, X (£)E)

(6.3) + Aa(t)B(t)(n. [exp(pA(t) + gA*(t) + rt)]€) + (1, Q(t)€).
By the Campbell-Hausdorff formula (see Meyer [17, p. 135]),
(1, [exp(pA(t) + gA*+ (2) + 1)) = e hrnter Jo P g1 [y (s (o),
Hence, the map (¢,z) — P(t, z)(n,§) is Lipschitzian with Lipschitz function
KE(t) = la(®)B)L(E) + BOU) + &V (@) + Z(1)).

We note that for arbitrary h € LZ(R), if we set

A=0,Y({t)=0, V(t)=h(t), Ulk)=-ht), Z(t)=0,
and

Q) = —5lh(H)IT

in (6.1), then the solution X (t) is the well-known Weyl operator W (hx(o,¢) associated
with h, where x is the indicator function on [0,7] and I is the identity operator on
the Fock space (see [12]).
(b) Again, consider
¢
X(t)=1+ / ([X (s)A%(s) + AA?(s)]dA(s) + X (s)A(s)dA(s)

0

(6.4) + X (5)A(s)dAT(s) + X (s)A(s)ds).

Equation (6.4) is equivalent to

i<777X(t)§>: {a(t)ﬁ(t)/o Bs)ds + B(t) +a(t) + 1| (n, X(H)A(t)E)

dt
+Aa(t)B(t)(n, A*(1)),  te[0,T),
(6.5)  (n, X(0)§) = (n, ),

where A(t) is the annihilation process satisfying

A(t)E = /0 Bs)dse, €= elB).
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The power of A(t) is that of composition of operators.
Equation (6.5) is Lipschitzian with Lipschitz function

(6.6) Kh(t) =

t t
/ B(s)ds [a(t)ﬂ(t) / B(r)dr + B(t) + a(t) + 1} ’
0 0
We remark that for A = 0, (6.4) is a special case of the stochastic evolution equation
t
(6.7) X(t) = X(to) + / X (s)[L1dA(s) 4+ LadA(s) + LzdA™(s) + Lyds]
to

introduced in [13], with time dependent evolution operators L;(¢) given by
Li(t) = A1), Lo(t) = L(t) = La(t) = A(1)

acting on T'(L2(Ry)).
It is well known that there exists a unique and unitary solution of (6.7) in the
strong topology if the operators L;, j = 1,...,4, fulfil certain conditions (see [13, 33]).
If we now choose the exponential vectors 7, £, where n = e(«), £ = e(8) such that
a(t) =0, B(t) = €', then from (6.5)

Lo, X(08) = (¢ + Vi, X(DAWE),
(6.9) 1, X(0)8) = (0, &) == =1, teo,1],
with exact solution
(6.9) <mX@@—wa&tﬂ.

Again by choosing «a(t) = it, 5(t) = —it, we have from (6.5)
d it
H0.X000 = (G —2+1) (1 XOAWOE - Ao 420
(6.10) (0, X(0)&) = (n,§) =c%,  teo1],
with exact solution for A = 0 given by
T4 3
mx@@—m{;—Z—“—].

(c) Let R =C, and u € Ly, «(Ry), a fixed locally bounded function. For a real

constant [ > 0 and f(t) = 12 (™" — 1), we consider

dX(t) = X () <dAeiu1 — dA s + dAT — ;|f(t)|2dt) . t>0,

The last equation is driven by the gauge, annihilation, and creation operators of
strengths e’ — I, e~™/ and f, respectively. For n = e(a), & = e(B), its equivalent
form is given by

%wx(t)g) = P(t, X ())(n,€),

(n, X(0)§) = (n, X&),
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where
P(t, X(t)(n,€)

- [B(t) (a(e™® — =IO + a(t)(£() - B(E)) 1f(tﬂ (. X(8)¢)

2

is Lipschitzian with Lipschitz function

K20 = ||80) (ae® ~ 070) 4 a)(76) - 5(0) - 170

If we set

Vi(t) = exp <z /0 tlsinu(s)ds) X(1),

then by Proposition 6.2 in [13],

d

7 (0 Va(0)8) = (O = 1)(@(t) + 1) (B(1) +1%) {0, Vu(1)8).

V,(0) = X(0).
The equation is also Lipschitzian with Lipschitz function
Keu(t) = (" = 1)(@(t) +12)(6() +12)].

Numerical examples.

Ezample 1. We apply the Lagrangian quadrature method to solve (6.8) by using
5 zeros of the Legendre polynomial Ps(u) of degree 5 in the interval [—1,1] as dis-
cretization points. Thus, we perform the integration in 5 nodes in each of the step
subintervals [0, 0.1], [0.1, 0.3], [0.3, 0.5], [0.5, 0.7], [0.7, 0.9], and [0.9, 1] of the interval
[0, 1].

By employing the linear transformation
_2t—=T —tg

u )
Tt

we convert (6.8) in the variable ¢ in each of the subintervals to the variable u € [—1,1].
For n = e(a), & = e(f), (6.8) transforms to the algebraic equations given by

5
Z a%;)Xwé,p = P(um, Xm)(n,¢)
p=1

1
(6.11) =5(T- to) (e —tum+ T+t _1)x . m=1,2,3,4,5,
on each of the subintervals

[to, T] € {[0,0.1], [0.1,0.3], [0.3,0.5], [0.5,0.7], [0.7,0.9], [0.9,1.0]}.

The initial value for the first subinterval [0, 0.1] transforms to

(6.12) > Ly(-1)Xpe,p = 1.

p=1
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Here, X, , approximates X,¢(up), up € [—1,1], p=1,2,...,5, and the initial value
for the subsequent intervals are given by

5

ZLl)(l)XﬂfaP?
p=1
where
Xne.ps p=1,2...,5

are the computed values from the immediate preceding interval.
Equations (6.11) and (6.12) are 6 linear algebraic equations in 5 unknowns:

Xpep, p=12,...,5

To solve for the unknowns, we treat as superfluous (i.e., we ignore) any one of the
internal nodal equations appearing in (6.11) and combine the remaining equations
with (6.12). The superfluous equation is then used to calculate the residual error of
the quadrature method.

In this example, we treat as superfluous the equation given by (6.11) for m = 1,
for each of the subintervals [tg, T, i.e.,

5
1
(6.13) Zaﬁw)Xn&p = i(T - to)(e(Tito)uﬁTHO — 1) Xpe .
p=1

The absolute residual error is then given by

(6.14) - DX,

5
1 1 B
Z agp)Xnﬁ,p - i(T — to)(e(T to)ur+T+to
p=1

which is the error for which the quadrature solutions fail to satisfy the superfluous

equation.
(1)

The quadrature coefficients amp, m,p =1,2,...,5, appearing in (6.11) are given
by
Pl(uy)
6.15 o__ Y o oy_ )
( ) App 17%2)’ Apq (up — tg) Pl (ug)’ P#4q

and the Lagrangian polynomial L,(u) of degree 4 is given by

e

(6.16) Ly(u) = [(w—ug)/(up — ug)], p=1,2,...,5,

b
Wl
o=

where u,, p=1,...,5, are the five zeros of Legendre polynomial P;5(u) of degree 5.
By using Mathcad computational software on a Samtron personal computer, we
generate the following table of values.

p Up Ly(=1) Ly(1)

1| 0.000000 0.533333186 0.5333331845
2| 0.538469 | —0.267941412 | —0.8931568153
3 | —0.538469 | —0.893156815 | —0.2679414133
4| 0.906180 0.076358457 1.5514065859
5 | —0.906180 | 1.551406587 0.0763584582
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The quadrature coefficient matrix is given by

[

(1)1 _
a4 | =

1

2

3

4

5

T W N~ =

0.000000000
—2.402748080
2.402748080
4.043565172
—4.043565172

1.435391432
0.758352423
—0.928558561
—7.70199715
1.960413273

—1.435391432
0.9285585610
—0.758352423
—1.960413273
7.701997150

—0.301166462
0.960247980
0.244414903
5.067049385

—0.551766757

0.301166462
—0.244414903
—0.960247980

0.551766757
—5.067049385

We solve the system of linear equations in each of the six subintervals on a Mega-
Image personal computer by using a software program developed with a single nu-

merical precision or word size to obtain the following results.

(a) For the subinterval [0,0.1],u = 20t — 1, t = 55(1 + u).

Up tp Computed value | Exact value Absolute error

(n, Xp€) (n, X (tp)&) [ Xp = X(tp)llne
0.000000 | 0.05000000 1.0025800697 1.0025888040 8.734 x 1076
0.538469 | 0.07692345 1.0062434016 1.0062521690 8.767 x 1076
—0.538469 | 0.02307655 1.0005324619 1.0005409610 8.499 x 1076
0.906180 | 0.09530900 1.0009733201 1.0097366680 3.467 x 1076
—0.906180 | 0.00469100 1.0000188125 1.0000220750 3.262 x 1076
1.000000 | 0.10000000 1.0107586190 1.0107588440 2.240 x 1077

(b) For the subinterval [0.1,0.3], u = 10t — 2, t = 15(2 + u).

Residual error for the subinterval = 3.260 x 10~7.

Up tp Computed value | Exact value | Absolute error

{n, Xp€) (n, X(tp)€) | I Xp — X (tp)llne

0.000000 | 0.2000000 1.0469640346 1.046982638 | 1.8603 x 10~°
0.538469 | 0.2538469 1.0798827100 1.079913195 | 3.0485 x 107°
—0.538469 | 0.1461531 1.0238766814 1.023884223 7.542 x 1076
0.906180 | 0.2906180 1.1090291990 1.109052081 | 2.2882 x 107°
—0.906180 | 0.1093820 1.0129658746 1.012970158 4.284 x 1076
1.000000 | 0.3000000 1.117440811 1.117461282 | 2.0471 x 1072,

Residual error for the subinterval = 3.2754 x 107°.

(c) For the subinterval [0.3, 0.5], u =10t — 4, t = % (u+4).

Up tp Computed value | Exact value | Absolute error
<777Xp§> <77»X(tp)§> ||Xp - X(tp)||n§

0.0000000 | 0.4000000 1.2370270174 1.237100660 | 7.3643 x 10~
0.5384690 | 0.4538469 1.3302350684 1.330364540 | 1.29471 x 10~*
—0.5384690 | 0.3461531 1.1653070910 1.165333229 | 2.5198 x 10~°
0.9061800 | 0.4906180 1.4094136881 1.409532054 | 1.18366 x 104
—0.9061800 | 0.3093820 1.1262680223 1.126295482 | 2.7460 x 10~°
1.0000000 | 0.5000000 1.4319787790 1.432098590 | 1.19811 x 10~*

Residual error for the subinterval = 1.40497 x 10~4.
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Up tp Computed value | Exact value | Absolute error

(n, Xp€) (0, X()€) | 1Xp — X(tp)llne

0.0000000 | 0.6000000 1.7503830996 | 1.750774850 | 3.91751 x 10~ *
0.5384690 | 0.6538469 | 2.0029050837 | 2.003651551 | 7.46467 x 10~*
—0.5384690 | 0.5461530 1.5594732874 | 1.559581521 | 1.08234 x 104
0.9062800 | 0.6906180 | 2.2232129379 | 2.223963183 | 7.50245 x 10~*
—0.9061800 | 0.5093820 1.4555795392 | 1.455722886 | 1.43347 x 10~*
1.0000000 | 0.7000000 | 2.2870345930 | 2.287821337 | 7.86744 x 10~*

Residual error for the subinterval = 7.96578 x 10~%.

(e) For the subinterval [0.7, 0.9], u = 10t — 8, t = & (u + 8).

Up tp Computed value | Exact value | Absolute error

(n, Xp€) n, X(tp)E) | 1 Xp — X(tp)llne

0.000000 | 0.8000000 3.2399942574 3.243056380 | 3.062123 x 103
0.538469 | 0.8538469 4.0660804136 4.072535340 | 6.454926 x 1073
—0.538469 | 0.7461531 2.6572106604 2.657848547 | 6.378870 x 104
0.906280 | 0.8906180 4.8380606659 4.845144775 | 7.084109 x 1073
—0.906180 | 0.7093820 2.3542432100 2.355193899 | 9.506890 x 10~4
1.000000 | 0.9000000 5.0699378020 5.077523954 | 7.586152 x 103

Residual error for the subinterval = 6.543177 x 1073,

(f) For the subinterval [0.9,1.0], u = 20t — 19, ¢ = 55 (u + 19).

Up tp Computed value | Exact value | Absolute error

(n, Xp€) (n, X (tp)€) [ Xp = X (tp)llne
0.000000 | 0.95000000 | 6.6285640837 | 6.638906201 | 1.0342117 x 102
0.538469 | 0.97692345 | 7.7628308886 | 7.775406243 | 1.2575355 x 1072
—0.538469 | 0.92307655 | 5.7152021899 | 5.723748457 | 8.546268 x 1073
0.906280 | 0.99530900 | 8.6982084176 | 8.712154152 | 1.3945735 x 102
—0.906180 | 0.90469100 | 5.1921131115 | 5.199930037 | 7.816926 x 10~3
1.000000 | 1.00000000 8.961388104 8.975763940 | 1.4375836 x 102

Residual error for the subinterval = 1.235407 x 1073,

1859

Ezample 2. We consider the simple Fock space I'(L%.(Ry)), where Y = R =
C,f =g =1, and its L*(Q, F,W) realization, where (Q, F, W) is a Wiener space.
Each random variable X is identified with the operator of multiplication by X so that
Q(t) = A(t) + AT(t) = w(t) is the evaluation of the Brownian path w at time ¢. In
this case, it has been shown that quantum stochastic integrals of adapted Brownian
functional F such that ftt) Eu[F(s,-)?]ds < oo exist (see [1, 2]). Here E, is the
expected value function.

For exponential vectors n = e(«) and £ = e(3), where «, 3 are purely imaginary
valued functions in LZ (R ), the equivalent form (1.3) of the quantum analogue of the
classical Ito stochastic differential equation

dX (t,w) = H(t, X (£))dt + F(t, X(£))dW (¢),

(617) X(t()) = Xy, t e [t07T]7
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is given by

%Ew [(X(t, w)z(w)] = Eu[B(8)F (¢, X (1) 2(w)] + Ewla(t)F(t, X(2)z(w)]
+ By [H(t, X (1)) 2(w)],

(6.18) Ey[X(to)z(w)] = Ey[Xoz(w)], almost all t € [tg, T,

where

619 stw)=ep{ [ (-alo) + st - g [T @26+ 2eas)

(see [1, 2] for details).

By considering the linear functionals F(t,z) = bz, H(t,z) = ax, where a, b are
real constants, we apply the Lagrangian quadrature method to solve (6.18). Thus, as
in Example 1, we perform the integration in 5 nodes in each of the step subintervals
[0,0.1], [0.1,0.3], [0.3,0.7], and [0.7,1] of the interval [0, 1].

For a = 2, b =1, a(t) = B(t) = i, problem (6.18) after the necessary transforma-
tion to the variable u € [—1,1] becomes
d 3
2y BulX (wz(w)] = (T = to) Bu[X (u)2(w)],
(6.20) X(-1) =X, wel[-1,1]

on each of the subintervals [to, T € {[0,0.1], [0.1,0.3], [0.3,0.7], [0.7,1]}.
Equation (6.20) transforms to the algebraic equations given by

5
Y alBulXp(w)z(w)] = Plum, Xin) (0, )

(6.21) = %(T —t0) Ew[Xm(u)z(w)], m=1,2,3,4,5,

with the initial value for the first subinterval [0, 0.1] transforming to

(6.22) D Li(—1)Ey[Xp(w)z(w)] = Eylz(w)] = e,
where
5
(n, X (u)¢) = ZLp(u)Ew[Xp(w)z(w)], p=12,...,5

The initial values for the subsequent intervals are given by
> Ly(1) Ey[Xp(w)z(w))],
p=1

where
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are the computed values from the immediate preceding interval.
Again, we treat as superfluous the equation given by (6.21) for m = 1 for each of

the subintervals [tg, T]. This yields the absolute residual error given by

(6.23)

We solve the system of linear equations in each of the four subintervals to obtain the

5
1
Z agp)Ew [XP
p=1

following results.
(a) For the subinterval [0,0.1],u = 20t — 1, t = 55(1 + u).

(w)z(w)]

4

_ §(T —10) By [X1(w)z(w)]| .

Up tp Computed value | Exact value Absolute
E,[Xpz(w)] exp(1 4 3t) error
0.000000 | 0.05000000 | 2.9299678213 | 2.929992901 | 2.5080 x 10~°
0.538469 | 0.07692345 | 3.0507182716 | 3.050743023 | 2.4752 x 10~°
—0.538469 | 0.02307655 | 2.8139973688 | 2.814022136 | 2.4768 x 1075
0.906180 | 0.09530900 | 3.1360391076 | 3.136048287 | 9.1800 x 1076
—0.906180 | 0.00469100 | 2.7374670005 | 2.737476471 | 9.4710 x 1076
1.000000 | 0.10000000 | 3.1581933020 | 3.158192910 | 3.9200 x 10~7

(b) For the subinterval [0.1,0.3], u = 10t — 2, t = 15(2 + u).

Residual error for the subinterval = 3.01843 x 106.

Up tp Computed value | Exact value Absolute
E,[Xpz(w)] exp(1 + 3¢t) error
0.000000 | 0.2000000 | 3.6692651703 | 3.669296668 | 3.1498 x 10~°
0.538469 | 0.2538469 | 3.9779328927 | 3.977964873 | 3.1918 x 10~°
—0.538469 | 0.1461531 | 3.3845492094 | 3.384579418 | 3.0209 x 1075
0.906180 | 0.2906180 4.2035278057 4.203539885 | 1.2080 x 10~
—0.906180 | 0.1093820 3.2029409383 3.202952370 | 1.1432 x 1075
1.000000 | 0.3000000 | 4.2631144550 | 4.263114515 | 6.0000 x 10~5.

Residual error for the subinterval = 4.8735 x 1076.

(c) For the subinterval [0.3,0.7], u = 5t — 2.5, t = £(2.5 + u).

Up tp Computed value | Exact value Absolute
E,[Xpz(w)] exp(1 + 3t) error
0.000000 | 0.50000000 5.7545129246 5.754602676 | 8.9752 x 10—°
0.538469 | 0.60769380 6.7633539045 6.763501302 | 1.47398 x 104
—0.538469 | 0.39230620 4.8961586520 4.896199540 | 4.0888 x 10~
0.906180 | 0.68123600 7.5521976331 7.552313952 | 1.16319 x 10~*
—0.906180 | 0.31876400 4.3847871371 4.384808705 | 2.1568 x 1075
1.000000 | 0.70000000 7.767798135 7.767901106 | 1.02971 x 10~*

Residual error for the subinterval = 1.156212 x 10~%.
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(d) For the subinterval [0.7,1.0], u = 2%¢ —

Tot=2(u+ ).

3 30
Up tp Computed value | Exact value Absolute
E,[Xpz(w)] exp(1 + 3t) error
0.000000 | 0.85000000 9.7276915337 9.727919013 2.2748 x 10~%
0.538469 | 0.93077035 | 10.8980614837 | 10.980879410 | 2.6458 x 10~*
—0.538469 | 0.76922965 8.6177335813 8.617926194 | 1.92613 x 104
0.906280 | 0.98592700 | 11.9277999780 | 11.928022930 | 2.2296 x 10~
—0.906180 | 0.71407300 7.9334830988 7.933620589 | 1.37491 x 10~*
1.000000 | 1.00000000 | 12.1822979700 | 12.182493960 | 1.959906 x 10~*
Residual error for the subinterval = 2.53749 x 107°.
Remark 6.1.

(i) Suppose that the numerical integration is to be performed for the interval
to <t < T, and to satisfy a prescribed error margin or tolerance. If the length T — t,
of the interval is sufficiently small and the number N of nodal points is sufficiently
large, one application of the quadrature algorithm may be adequate. However, usually
in practice, this will not be the case, and if N is conveniently fixed, the interval [to, T
has to be divided into subintervals [to, t1], [t1,t2] - - - [tq—1. tq], say. Thus starting with
the first subinterval [tg, ¢1] and the prescribed initial condition, numerical quadrature
integration is performed on N nodes in [tg, t1]. If the residual error at the superfluous
node is sufficiently small, then integration proceeds into the next interval [t1, to] with
a computed initial condition obtained by the use of extrapolation formula

N
Xoe (t1) = Z Lp(tl)Xni (tp),
p=1

where X,¢(tp),p = 1,2,..., N, are the computed values for [tg,¢1]. Otherwise the
length t; —t( of the subinterval [to, ¢1] is subdivided until the first subinterval produces
the desired results. However, we could increase the number of nodes to achieve the
same purpose. However, without loss of generality it is assumed that N is fixed.
Integration can proceed in this manner until the interval [¢,,T] is reached. Finally,
we remark that if the residual error at any stage [tx,tx+1] is much smaller than the
tolerance level, then the succeeding interval may be chosen by doubling the size of
the interval [tg, tx+1]. Stability of this method will be addressed elsewhere.

(ii) The numerical experiments given in Examples 1 and 2 above show that the
Lagrangian quadrature method is a method of high accuracy. We have convergence to
exact values at each of the discretization point to a minimum number of one decimal
place in Example 1 and three decimal places in Example 2. The accumulated error
at the final time instant ¢t = 1 is 1.4375836 x 10~2 in Example 1 with six subintervals
of [0, 1] and 1.959906 x 10~* in Example 2 with four subintervals of [0, 1].

In comparison with the Euler scheme and a 2-step scheme which were employed in
[2] to solve the same model problem of Example 2, we notice that the Euler and the 2-
step scheme produced accumulated errors of 0.78042828 and 0.11070989, respectively,
at the final time ¢t = 1 with steplength of h = 274, This shows that the quadrature
method of this paper is more accurate than said schemes.

(iii) As a measure of the computational complexity of the quadrature scheme,
we estimate the arithmetic floating point operations required for implementation as
follows: By (6.15), computation of each diagonal element a,(;,) of the N x N quadrature
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coefficient matrix [a&)] requires 1 multiplication, 1 addition, and 1 division. For each

of the other entries, a;}z), p # ¢, a maximum of 4N — 5 multiplications (i.e., if the

values of the derivative of the Legendre polynomial Py (u) of degree N are evaluated
directly), 2N — 1 additions and 1 division are required. The Lagrangian interpolant
L,(u) defined by (6.16) requires 2(IN — 1) additions, 2(N — 2) multiplications, and 1
division for each p=1,2,..., N, where N is the number of nodes.

As a result of the above estimates, the Lagrangian quadrature scheme has a large
number of multiplication, addition, and division floating point operations. This could
be calculated by employing the standardized weights for each type of floating point
operation as in [32, p. 193]. Since the number depends directly on the total nodal
points N, it is necessary that the total nodes be restricted to the range 1 < N < 15
for each of the subdivisions of the entire interval [to, T'] in order to minimize the CPU
time. For the total nodes N = 5 employed in Examples 1 and 2 above, very short
CPU times were returned by the personal computer for each of the fragments of the
numerical computations reported in Examples 1 and 2 above.
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1. INTRODUCTION
In continuation of our work in Refs.**! concerning numerical procedures
for quantum stochastic differential inclusion (QSDI), this paper is concerned
with the development, analysis and error estimates involved in a one—step
discrete scheme for solving quantum stochastic differential inclusion:

dX (1) € E(t, X(0)d N, (1) + F(t, X (1)) dA(t) + G(t, X (7)) dAg+(t)
+ H(t, X(t))dt, almost all ¢ € [0, T]
X(0)=x° (1.1)

The coefficients £, F, G, H in (1.1) are elements of L, 2([0, T] x A)ys> and
the integrators A, 4y, Ag+: [0, T] — A are the gauge, annihilation and
creation processes. The locally convex space A is the completion of the linear
space LT(DQE, R ® F(L.,,z([F\R +))) in the Hausdorff topology generated by the
family of seminorms {|x[|,: = [{(1, x{)|: x € A, n, £ € DE}. A solution X(7)
of (1.1) is a densely defined linear operator lying in Ad(A),,. (see Refs, 3487101
for details).

For arbitrary n, £ € DQL, the equivalent form of (1.1) is the first order
initial value nonclassical inclusion given by

d
7 {1 XS € P(t, X(0)(n, &)

X(0) = X°, almost all ¢ € [0, T] (1.2)

where (17, &) — P(t, X(¢))(, &) is a multivalued sesquilinear form on DQE
with values in the field of complex numbers. The explicit form of the map
P(t, x)(n, &) is described as follows.

For (,x) e R, x A, 1, £ € DQE such that § = c ® e(®), & =d ® e(f),
c,deD, o, el (R,), define

P, [0, T] x A—>24

({E‘P MaRrceL DEKKER, INc.
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Quantum Stochastic Differential Inclusions 1217

by
Pp(t, x) = pp(DE(, x) + vg(DF (t, x) + 0,()G(1, x) + H(2, x)

where

Hap(0) = (o0), TOBD)y Va0 = (D), PO,
a,(t) = (1), g(0)),

This leads to the multifunction P: [0, 7] x A — 252408 defined by

P(ts x)('/l» 5) = <175 P(xﬂ(t’ X)é) = {(’7’ Z(ts x)é): Z(t’ X) € Pocﬂ(tr x)}
(1.3)

In what follows, we employ the basic function spaces, the set theoretic
operations and the Hausdorff metric as in Refs.!>**1%],

The plan for the rest of the paper is as follows: Sec. 2 contains preliminary
statements and basic results in respect of the modulus of continuity of
multivalued sesquilinear forms associated with QSDI (1.1). The main result
of this paper concerning the error estimates of the discretized inclusion is
established in Sec. 3. This extends and compliments the results of Ref.[®]
concerning similar discretizations of classical differential inclusions.

2. PRELIMINARY STATEMENTS AND ESTIMATES

We present in this section, some notations, definitions, and estimates
which we will employ in the sequel. Without loss of generality, we consider
inclusion (1.1) and (1.2) defined only on the interval [0, 1] € R, . Any other
interval [0, 7], for 7> 0 may be converted into [0, 1] by an appropriate
regular transformation. In what follows, unless otherwise indicated, 7, & €
D®E such that n = c @ e(x), E =d ®e(f), c,d € D, o, f € L, 1o, (R,).

Let P: [0, 1] x A — 259085 he 3 myltivalued sesquilinear form satis-
fying the following conditions:

S For every x € ;l, t € [0, 1], P(t, x)(n, &) is nonempty, compact, and
convex subset of C the complex field.

Siy The map P(t, -)(1, ) is locally Lipschitzian uniformly in 7 € [0, 1],

with Lipschitz constants K, ;.
MarceL DExkER, INC. m
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Siiiiy There exists positive constants L and 4 such that

|P(t, )17, )| < Llixll,e +4
for all x .;l, t € [0, 1], and for all , ¢ € DQE.
Here,

|P(t7 x)(’?, é)l = sup |an|
Z,:€P(tx)(1,€)

We note that the map ¢ — P(t, x)(y, £) is measurable in [0, 1] for every fixed
element x € A (see Ref.™)) since the map is locally integrable on R 4

In our subsequent analysis, we shall need the following Theorem which is
the basic existence result of (1.1) due to Ref.!™

Theorem 2.1
Let 0 be a positive number and I = [f), 7] € R,. Assume that the
following conditions hold.

(@) Z:1 A is an arbitrary process lying in Ad(.;l) and there exists

positive function W, :(¢) satistying

wac

d
d(E (n, Z(0)S), P(t, Z(1)(n, f)) =< W,:(t)

(b) Each of the maps E,F,G,H is Lipschitzian from Q,, to
(clos(A), t;;) where

09 ={(t.x) €I x At |x = Z(®),: < 0, Vn,
é € D@[Ea and ”'xO - Z(tO)”r]f =< H}

(c) For arbitrary 5, ¢ € DQE, t € 1,

Eﬂé(l‘) = ||X0 - Z(tO)”ﬂf exp (J dSKnip(S)>

f fy

({E‘P MaRrceL DEKKER, INc.
s 270 Madison Avenue, New York, New York 10016
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If in addition, E, F, G, H are continuous from / x A to (clos(.;l), Ty), then
there exist a solution @ of inclusion (1.1) and a subset J C / such that

1D(t) — ZO)l: < Eye(t), t€J

and

d d
7 (n, ©()¢) — 7 (1, Z(NE)| < Ky (DE,e(6) + W,e(2)

for almost all # € J where J = {t € I E,:(f) < 0} and K,1§P: I+ (0, 00) is the
Lipschitz function for P lying in L ' (1).

Remark 2.2

(1) Inthis paper, we assume that the coefficients £, F', G, H appearing in
(1.1) are Lipschitzian uniformly in ¢ € [0, 1]. Consequently, the map
(t, x) = P(t, x)(n, x)(n, &) is also Lipschitzian in x, uniformly in
t € [0, 1]. That is for (¢, x), (¢, ) € [0, 1] x A,

p(P(t’ x)(’% 5)’ P(t/s J’)(’?, f)) = Kncf”x _y“;]f

(ii) By Theorem 2.1, the set of solutions of (1.1) is nonempty and the
values of the solutions are contained in the set

Q = A eXp (KI]f)B g HB
where
B={xeA:|xll,: <1,Vn, ¢ e DRE}

and 0 > 0 is some positive fixed number. This can be shown by setting
Z(f) = 0 and Z(0) = X° in Theorem 2.1. Then by Siiyy above,

d(0, P(z, 0)(n, &) < 4

Setting W, (1) = 4 in Theorem 2.1, we conclude that there exists a
solution ® € 4d(A),,. of (1.1) such that

IPO)l,: =< Aexp (K,e)

for all #, £ € DRE. Obviously, J x O € Q-

MarceL DExkER, INC. m
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Following a similar procedure as in Ref.!®), we now introduce the notion
of the modulus of continuity for multivalued sesquilinear forms associated
with QSDI. Consider a multivalued sesquilinear form

F: [0, 1]—>2%aPeb)

such that F(¢)(n, £) is compact for all 7 € [0, 1], , £ € DRE.
Definition 2.3

(i) The local modulus of continuity for F( - )(n, &) is defined by
o(Fs 1, h,n, &) = sup{p(F ()1, &), Fu)(n, ©));

h h
S, Ue [t_ijtdl—Z}m[O’ 1]}

(i) The L, averaged modulus of continuity for F( - )(n, ) is defined by

1 1/p
WF (1, O, = ”0 [o(F; 1, h, 1, é)]Pdt} , I=p=o0

We note that the above modulus is well defined since the map
t—o(F; t, h, 1y, &)

is measurable and bounded on [0, 1]. For p = 1, we simply write
(5 ), O = T(F5 k)1, ©)

(iii)) For 0<¢ <, <.-- <t <1, the p-variation of the map
t — F(t)(n, &) is defined by

k p

Wy(F;n, &) = supd Y [p(F (1), ), F(t)(n, EN] ¢ -

i=1

Consequent upon the definitions above, we have the following results whose
proofs follow similar arguments as in Ref.[*].

Theorem 2.4

(1) For hy <h,, we have

o(F; b)), &), < T(F; hy)(, ©),

({E‘P MaRrceL DEKKER, INc.
s 270 Madison Avenue, New York, New York 10016
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(i) () 4 Fy; h)(n, &), < ©(Fy; (1, O, + 1(Fy; h)(, £),, where

(Fy + F)01, ©) = F1(0)0, &) + F> (0, ©)

the algebraic sum of two mulivalued sesquilinear forms:
Fy, Fy: [0, 1]—>25esa08E)
(i) For any positive integer £,

o(F; kh)(n, &) < kt(F; )1, &)
(iv) If F has bounded p-variation W,(F’ n, £), then

w(F; h)(n, &), < [W,(F; n, O1'Ph'?

) limy,_ o t(F; h)(n, &) = 0 if and only if the map t — F(t)(n, &) is
Hausdorff continuous at almost all 7 € [0, 1].

Next, we fix a partition 0 < ¢, <t,---ty = | of the interval [0, 1] where
ty —t;=h=1/N and define the averaged modulus of continuity for the

15

map (¢, x) — P(t, x)(n, £). This is needed for the comparison of the set of
solutions of (1.1) with the set of solutions of the associated discrete inclusion

<717 ‘XviJrlé) € <717 ‘szé> + hP(tia ‘sz)(’/” 5)
X, =X i=0,1,...,N—1 2.1)
In (2.1), {X;},—," is a discrete set of members of A that approximates {X(t,)},

X(f) being an exact solution of (1.1). By Theorem 6.3 in Ref.[®! inclusion
(2.1) is equivalent to the discrete inclusion given by

tiv1
Xy e+ [ B0 d A )+ Ft X))
t.

i

+ G(t, X;) dA, " (s) + H(t, X)) ds)

for approximating QSDI (1.1) in the space A.

Definition 2.5
For fixed x € Q, t € [0, 1], we adopt the following notations and defini-
tions as in Ref.[®.

(i) o(P;t,x, h, 1, &) = sup {p(P(s, x)(11, <), Plu, X)(11, O)); 5,
u et —(h/2), t+ (h/2]N[0, 11},

where p( - -) is the Hausdorff metric on 2.

MarceL DExkER, INC. m
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(ii)) Define the map

Q(P: ':ha n, é) :SUP{QJ(P, ',X,h,]’[, é)ser}

Then, the map ¢t — Q(P; t, h, n, &) is measurable, bounded, and
therefore integrable on [0, 1].
(iii) The averaged modulus of continuity for the map P is defined by

1

(P ), &) = L QP; 1, b, &) di

We remark here that Theorem 2.4 (i)—(v) hold for the map
P(t, x)(n, &) appearing in (1.2) provided that in (iv), P(-, x)(y, &)
has bounded p-variation uniformly in x € Q € A, and in (v),
P(-,x)(n, &) is Hausdorff continuous almost everywhere in [0, 1]
uniformly in x € Q.

3. ERROR ESTIMATES

This section is devoted to the establishment of error estimates involved in
solving the discretized inclusion (2.1) in place of (1.2). In what follows, let
n, £ € DRL be arbitrary such that y = c ® e(®), ¢ =d @ e(f), c,d € D, o, f €
L;,Z(IR +). In solving the discretized inclusion (2.1), one may choose
Xyeip1 = (1,X;,€) arbitrarily from the right hand side of (2.1). However,
we employ a definite approach which ensures that these solutions possess
certain properties. To this end, we introduce the notion of Lipschitzian

quantum stochastic processes.

Definition 3.1 .
A stochastic process X :[0, 1] — A will be said to be Lipschitzian on
[0, 1] if there exist constants L,: > 0 such that

”X(tl) _X(tZ)”nE = Ln§|t1 - t2|9 tha L e [09 1] (31)

We remark that the set of such processes denoted by L(;l), is not empty.
The annihilation process 4:[0, 1] — A given by

A = (L Bs) ds)é, =) e Low™R,)

MaRrceL DEKKER, INc.
270 Madison Avenue, New York, New York 10016
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satisfies, for #;, #, € [0, 1],

4(#) — AE)N,e = [, A(#)E) — (n, A()E)]

<1, 5>||J Bs)ds|

153

< Ml|{n, &It — b
= Ly¢lt; — b

where

M =sup |B@s)l,  Lyz = M[(n, &)
[0.1]

Let X € L(.;t)ﬂAd(.;t)wac. We construct the solution X” of the discrete
inclusion (2.1) as follows: X" = X° and for i =0,1,2---N — 1,
Xyein" = 0.Xi11"€)
= proj((n, X(t;41)), (1.X"E) + hP(t, X", &)
(3.2)

where proj(a, A) is the unique element of 4 closest to the element a € C. The
existence and uniqueness of proj(a, 4) are assured by the convexity and
compactness of 4 C C. Consequently, we have the following results.

Proposition 3.2

Assume that the map (¢, x) — P(t, x)(, ) appearing in (1.2) satisfies the
conditions S — Siji)- Then there exists constant C = C(1, ¢) > 0 such that
forall N > 2,

max |[X/ = X(t)l,; < c[n)?m) =Xl

0<i<

1
+ L d(% (1, X(S), P(t, X(1)(n, i)) dt +<(P; I, &) + h}

Proof:
We first show that for any integrable sesquilinear form valued map
f :[a, b] — sesq(DQE) and any compact and convex set 4 C C,

b b
d(J S, Odt, (b— a)A) < J d(f (), &), A)dt (33)

MarceL DExkER, INC.
270 Madison Avenue, New York, New York 10016
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Since

b
j proj(A, (1), ) di € (b— aMd

then

b
d(j £, &), (b~ a)A) <

b b
J 1, ydi — J proj(A. £ (1), é))’

b
< J |/ (0, &) — proj(4, f()(n, &)| dt

b
- J A0, O, A)di

Also, for any compact subsets 4, B of C, y € C, we shall employ the well
known inequality:

d(y, 4) = d(y, B) + p(4, B) G4
Next, fori =1,2..., N, we employ the notation

Cpei = d(n, X(1)E), (0, X (1)) + hP(t_y, X (1)), )
Using (3.3) and (3.4), we obtain

N

N
D Ce =D A X (6)E) — (1, X (b)), hP(t;_y, X (t-)(n, ©))
i=1

Il
_

M=

lit1 d B §
J d(clt (n, X2, Pt X (fi-l))(n,5)> dt
1 7%

-

J [d (ﬁ n, X2, P(t, X0)n, «f))

— ), dt

+ p(P(t, X)), &), P(ti_y, Xt )1, 5))} dt (3.5)
Nt _ _

+ Z J p(P(t, X)), &), P(t;_y, X(;_1))(n, <))dt - (3.6)
i=1 7

Copyright © 2003 by Marcel Dekker, Inc. All rights reserved.
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The last term in (3.6) satisfies

i 1

i

N i - .
J p(P(t, X)), &), P(t;_1, X(1;_1))(n, &) dt
=1

i=1

<> J p(P(t, XY, &), P, X(6)n, &) dr

fi1

N
+ ZJ p(P(tl’ X(tz))(rla é), P(tl'—la X(ti—l))(na 5)) dt

t

i

<2 J PPt X(0)(n, &), P(t;, X(8))(n, &) dt

i=1
lit1

N
+ le Ky 1K) — Kty )l de < (P W), ©)

t

+ K, :Lych

Consequently, from (3.6),

N 1 d B B
Z C}]{,ih = J() d<_ <’79 X(t)é% P(t’ XU))(”I, é)) dt

i=1 dt
+ KyeLyeh 4 1(P; h)(n, ©) (3.7)
where K, L, are the Lipschitz constants for the map P(#, - )(17, {) and the

process X respectively.

Next, we define D,/ by

né,i

D, = d((n.Xt)E), 0.X: &) + hP(t,_y, X", &),
i=1,2...,N

Again, by inequality (3.4),

D, < d((n, X(t)E), (n, X(t,_)E) + hP(t;_y, X(t;_ )0, ©))
+ p({, Xi_y"E) 4+ hP(t_y, Xi_"Yp, €), (n, X(6,_1)E)
+ hP(t;_y, X (1)), ©))

MarceL DExkER, INC. m
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< G+ 1Xt ) — X My + hp(P(t_y, XM, &),
P(t_1, X(t,_)n, &)
<G+ (L +hKDIX () — X"l

But by (3.2), the construction of solution X, ./ of the discrete inclusion (2.1)

né,i
satisfies

D" = 1in, X(6)&) — X,:./"| = |.X(8) — XI,c

Therefore, setting

D}z = 1X(0) = X°|| ¢

we have

h h h .
Dl]f,i S Cl7é,i + (1 + hKVli)Dﬂf;i_] 5 1= l, 2 ey N

By the discrete version of the well known Gronwall inequality (see Dontchev
and Farhki,®! for example) we get

N
h K, : h h
max D, " < e E C.:"+ D,
O<i<n IS (i_l né,i né,0

Hence, by (3.7), the conclusion of Proposition (3.2) follows from the last
inequality, where the constant C = exp (K,;).

Remark 3.3 _
If the quantum stochastic process X is a solution of (1.2), then

- d - -
I1X(0) — X°|I,.e =0, d(@ (n, X()E), P(t, X(D)(n, f)) =0

for almost all ¢ € [0, 1]. Furthermore, by Theorem 2.3 (iv),

©w(P; h)(n, &) < hW(P; 1, &)

where W(P; n, &) is the variation of the map P introduced in Definition 2.2. In
particular, if P(-, x)(y, £) has a bounded variation uniformly in x € Q, then
©(P; h)(n, &) = O(h). Consequently, Proposition 3.2 yields

max IX(6) = X"l < €51+ WPy,

({E‘P MaRrceL DEKKER, INc.
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The main result of this paper depends partially on the next lemma. To this end,
we introduce the following notation.

Rné = sxp {|P(fl, )(IN)(’/L é)'anN = {)g]f,iN} SOIVeS (21)7

t, € [0, 17} (3.8)

Lemma 3.4
Let R, satisty (3.8). Then for every solution

XN =X = XN, i=0,1,2..., N}

of (2.1), there exists a solution ®( - ) of (1.1) such that

ma)](\/ ”(I)(tz) _)(iN”r,g' =exp (K1§)(R;7£Kn§h + T(P, h)(’/]: é)) (39)

0<i<

Proof. ~
Let a stochastic process YV : [0, 1] — A be defined as follows:

1
YNy =x" +Z(t_ti)()(i+lN XVt <t <ty
i=0,1,2...,.N—1

The associated piecewise linear matrix element ¥, - (¢) := (n, YV (1)¢) is given
by

1
YN0 = X, N + 7 (= )Xyt = Xei™) (3.10)
where {X,: "} is a set of grid solutions of (2.1). Clearly, Y € Ad(A),.
By construction we have
do N 1 N N Ny, =
PRLE = ;(‘Xﬂf,ﬂrl —Xyei) € P, XM, ©) @3.11)

Next, we estimate

d
d(a v, 0. P, YV (1), 6))

Copyright © 2003 by Marcel Dekker, Inc. All rights reserved.
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By inequality (3.4),

d
d(E Y, ), Pt YN @), 5))

d
< d(a Y, (0, PG, X, 5))

+ p(P(t, YY), &), P, X)), &)

dt
+ Kné | Ync’N(t) - Xné,iN|

< d(ﬁ v, 0, P, XV, é))

< d(% Y, (0, Pt, XM, é)) + K, :R,:h (3.12)

The last inequality follows from (3.8) and (3.10). Again, by employing (3.11)
and (3.4), we have

d

d(E Y, (0, Pt, XM, f))
< p(P(t, XY, O, P(t, XV ), ©))
< w(P; X,-N, t,2h,n, &)

<supw(P;x,t 2h,n, &) =QP;t, 2h,n,E)
xeQ

Applying Theorem 2.1 by setting

W,e(t) = KyeRych + Q(P; 1, 2h, 1, ©)

we conclude that there exists a solution @( - ) of (1.1) satisfying inequality (3.9).
Next, we present our main result. To this end, we introduce the following
sets of vectors in the space C"*'. _
Denote by S(X°) the subset of Ad(A),,. consisting of the trajectory
bundle of (1.1). Then, we define the following sets.

RYX")n, &) == {®,:" = (@,:(1,),i=0,1,2...,N),
such that ®(-) € S(X°)}

({E‘P MaRrceL DEKKER, INc.
s 270 Madison Avenue, New York, New York 10016

Copyright © 2003 by Marcel Dekker, Inc. All rights reserved.
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DY(Xn,¢) == {X,/" = X, i=0,1,2...,N),
such that XﬂéN is a solution of

the discretized inclusion (2.1)}
For U,V € C"', we employ the maximum norm

U~ V| := max |U;, — V]
0<i<N

and the associated Hausdorff metric p on 20"
Consequently, the following theorem has been established by the combi-
nation of Proposition 3.2 and Lemma 3.4.

Theorem 3.5
Assume that the QSDI (1.2) satisfies conditions S(;, — S;;;). Then there
exist positive constants depending only on 7, ¢ such that

p(RY (XY, &), DY (XY, &) < CLx(P; h)(n, &) + h] (3.13)

forall N > 2.
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ABSTRACT. This work is concerned with the existence of so-
lution of Quantum stochastic differential inclusions in the sense
of Caratheodory. The multivalued stochastic process involved
which is non-convex is Scorza-Dragoni lower semicontinuous
(SD-ls.c.) hence giving rise to a directionally continuous se-
lection. The Quantum stochastic differential inclusion is driven
by annihilation, creation and gauge operators.

Keywords and phrases: Lower semicontinuous multifunctions,
Scorza Dragoni’s property, quantum stochastic processes.
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1. INTRODUCTION

The vast applications of differential inclusions in control theory,
economic model, evolution inclusions to mention a few, had made
the study of differential inclusions of great interest [1], [8], [18].
Likewise, the quantum stochastic differential inclusions which is a
multivalued generalization of quantum stochastic differential equa-
tion of Hudson and Parthasarathy has vast applications. This ex-
tension was first done in [9] in which the existence of solutions of
Lipschitzian quantum stochastic differential inclusions was estab-
lished. The study of solution set of this problem was done in [2], [3]
and references cited there. The case of discontinuous quantum sto-
chastic differential inclusions has application in the study of optimal
quantum stochastic control [15]. The quantum stochastic calculus
is driven by quantum stochastic processes called annihilation, cre-
ation and gauge arising from quantum field operators.

A multivalued map that is lower semicontinuous and convex-valued
has continuous selection by Michael selection theorem, but if the
convexity is dropped the continuous selection does not exist. But
for a differential inclusion with lower semicontinuous multifunction
that is not convex-valued, there is an analogue of Michael selection

Received by the editors April 20, 2012; Revised: May 31, 2012; Accepted: June 6,
2012
ICorresponding author
81
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theorem called the directionally continuous selection [4] which gave
rise to a class of discontinuous differential equations. A more gen-
eral case of this selection for infinite dimensional space is found in
[5].

The quantum stochastic differential inclusions considered in this
work has its coefficients to be multivalued stochastic processes that
have a special form of lower semicontinuity called Scorza-Dragoni
lower semicontinuous case. It is noteworthy that the Scorza-Dragoni
property is a multivalued generalization of Lusin property[14]. The
directionally continuous selection of the Scorza-Dragoni of the mul-
tifunction gave rise to a class of quantum stochastic differential
equations considered in [16] which have solutions in the sense of
Caratheodory. Apart from the application of this work in quantum
stochastic control, another motivation for the work is the applica-
tion of the results in the study of non-convex quantum stochastic
evolution inclusions which shall be considered in a later work.

In section 2 we give preliminaries which are essential for the work
and we prove the main results in section 3.

2. PRELIMINARY

In what follows, if U is a topological space, we denote by clos(U),
the collection of all non-empty closed subsets of U.

To each pair (D, H) consisting of a pre-Hilbert space D and its
completion H, we associate the set L} (D, H) of all linear maps z
from D into H, with the property that the domain of the operator
adjoint contains D. The members of L} (D, H) are densely-defined
linear operators on H which do not necessarily leave D invariant
and L} (D, H) is a linear space when equipped with the usual no-
tions of addition and scalar multiplication.

To H corresponds a Hilbert space I'( H) called the boson Fock space
determined by H. A natural dense subset of I'(H) consists of linear
space generated by the set of exponential vectors(Guichardet, [12])
in I'(H) of the form

() =P QR f. feH
n=0
where ®" f = 1 and ®" f is the n-fold tensor product of f with
itself for n > 1.
In what follows, ID is some pre-Hilbert space whose completion is
R and ~ is a fixed Hilbert.
L2(Ry)(vesp. L2([0,t)),resp. L2([t,00)) t € Ry) is the space of
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square integrable y-valued maps on R, (resp.[0,t), resp.[t,00)).
The inner product of the Hilbert space R @ T'(L2(Ry)) will be
denoted by (.,.) and || . || the norm induced by (.,.) .

Let E, E; and Ef, ¢ > 0 be linear spaces generated by the exponential
vectors in Fock spaces I'(L2(R,)), ['(L2([0,t))) and I'(L2([t, 00)))
respectively ;

A= Li(DSE, R @ T(L2(R,)))
A, = L(DEE, R @ D(L2([0,1)) ® I
A" =T, ® L (E', T(L2([t, 0)))), t >0
where ® denotes algebraic tensor product and T;(resp.I) denotes

the identity map on R ® I'(L3([0,1))))(resp.I'(L3([t,00)))), t >0
For every n,¢ € DQE define

| @ [[pe=] (n,28) |, v€ A

then the family of seminorms

{Il'- llng: . & € DSE}

generates a topology 7, , weak topology .

The completion of the locally convex spaces (A, 7,) , (A, 7w) and
(A*,7,) are respectively denoted by A , A; and A".

We define the Hausdorff topology on clos(A) as follows:
Forz e A, M,N € clos(A) and n, £ € DRE, define

Pre(MN) = max(dye (M, N), 6y (N, M)

where

Spe(MUN) = sup dye(z, N) and
xeM

dn&(va) = ylgjff |z —y ||n§ .

The Hausdorff topology which shall be employed in what follows,
denoted by, 7 , is generated by the family of pseudometrics {pye(.) :
n,§ € DRE}

Moreover, if M € clos(A) , then || M ||, is defined by

| M= pre(M,{0});
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for arbitrary n, £ € DRE.
For A, B € clos(C) and x € C , a complex number, define

d(x, B) =

5(4, B) = sup d(z., B)
€A
) =
(

1nf]x—y\

and p(A, B) = max(0(A, B),§(B, A)).

Then p is a metric on clos(C) and induces a metric topology on the

space. N

Let I CRy. A stochastic process indexed by I is an A-valued mea-

surable map on 1. N

A stochastic process X is called adapted if X (t) € A, foreach t € I.

We write Ad(A) for the set of all adapted stochastic processes in-

dexed by I.

Definition 1: A member X of Ad(A) is called

(i) weakly absolutely continuous if the map ¢t — (n, X (¢)§) , t € [

is absolutely continuous for arbitrary 7, ¢ € DQE

(i) locally absolutely p-integrable if || X (.) ||, n¢ 15 Lebesgue - mea-

surable and integrable on [0,¢) C I for each t € I and arbitrary

n,¢ € DRE.

We denote by Ad(ﬂ)wac(resp.Lfoc(ﬂ)) the set of all weakly, abso-

lutely continuous(resp. locally absolutely p-integrable) members of

Ad(A).

Stochastic integrators: Let L5, (R+) [resp.L% ) ;,.(R4 )] be the lin-

ear space of all measurable , locally bounded functions from R, to

v [resp. to B(y) , the Banach space of bounded endomorphisms of
9] If f € L ZOC(R+) and 7 € Ly ) ,,.(R.) , then m f is the member

of L29,.(R..) given by (xf)(t) = n(6)/(¢) , t € R,

For f € L2(R); and m € L%, ,.(Ry); the annihilation , creation

and gauge operators, a(f),a™(f) and A(7) in L;;(D,F(LEY(R)JF))

respectively, are defined as:

a(els) = {1, 9)rzce,e(0)
@ (F)e(g) = ey + ) lo-o
A(mlelg) = (™ 1) o=y

g€ L3 (R),
For arbltrary f € L3,(Ry) and 7 € L, ), (Ry) , they give rise
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to the operator-valued maps Ay, A;{ and A, defined by:

Ar(t) = alfXou)
A}F(t) = a+(fX[0,t))
Aﬂ(t) = )\(WX[O,t))

t € R, , where y; denotes the indicator function of the Borel set I C
R.. The maps Ay, A}F and A, are stochastic processes , called anni-
hilation, creation and gauge processes , respectively, when their val-
ues are identified with their amplifications on R@T'(L2(Ry.)). These
are the stochastic integrators in Hudson and Parthasarathy|[13] for-
mulation of boson quantum stochastic integration.

For processes p, q,u,v € LZOC(A), the quantum stochastic integral:

/ (p(s)dAr(s) 4 q(s)dAs(s) + u(s)dA} (s) +v(s)ds), to,t € Ry

to

is interpreted in the sense of Hudson-Parthasarathy[13] The defini-
tion of Quantum stochastic differential Inclusions follows as in [9].
A relation of the form

dX(t) € E(t, X(t))dA(t) + F(t, X(t))dAs(t)
+ G(t, X(t))dA; (t) + H(t, X (t))dt almost all t € I (1)

is called Quantum stochastic differential inclusions(QSDI) with co-
efficients E, F, G, H and initial data (to, x¢).
Equation(1) is understood in the integral form:

X(t) € xo + / (E(s, X(s))dAx(s) + F(s, X (s))dAy(s)

to

+G(s, X (s))dA} (s) + H(s, X (s))ds), t € I

called a stochastic integral inclusion with coefficients F, F, G, H and
initial data (o, xo)
An equivalent form of (1) has been established in [9], Theorem 6.2
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(LE)(t,2)(n,€) = {0, kas(t)p(t, 2)E) : p(t, ) € E(t, x)}
WEF)(t,2)(n,§) = {(n,vs(t)q(t, 2)§) : q(t,x) € F(t,2)}
(0G)(t, 2)(n, &) = {(n, oa(t)ult, 2)§) : ult,z) € G(t,2)}
Pt,z)(n, &) = (nE)(t, x)(n,&) + WF)(t,2)(n,€) (2)

+ (0G)(t, 2)(n. ) + H(t, ) (n, )
H(t,x)(n, &) = {o(t, z)(n,€) - v(., X())
is a selection of H(., X())V X € L2 _(A)}
Then Problem (1) is equivalent to

&, X(0E) € B(t, X (1)(1,€)

dt (3)
X(to) = 2o

for arbitrary 7, € D®E , almost all ¢ € I. Hence the existence
of solution of (1) implies the existence of solution of (3) and vice-
versa.

As explained in [9], for the map P,

P(t,x)(n,€) # P(t, (n, 2€))

for some complex-valued multifunction P defined on I xC for t € I ,
re A n & e DRE.
Definition 2: For an arbitrary n,¢ € DQE, let M > 0 , we define

M
a set Fné’ as

DM = {(t,2) € I x A:| (n,2€) |< Mt}

Let (to, z9) € I x A and € > 0. For an arbitrary 1, ¢ € DQE, (to, 20)
€I x Aand § > 0, the family of conical neighbourhoods;

T ((tg, 20),6) = {(t,2) € I x A:|| @ — xg [|je< M(t — o),

t0§t<t0+(5}

generates a topology, 77, which satisfies the following property:
(P) For every pair of sets A C B, with A closed and B open(in the
original topology), there exists a set C, closed-open with respect to
7+, such that A Cc C C B.

This topology follows from [5] and the references cited there.
Definition 3: (i) For an arbitrary pair 1, € DQE a map & : I x

A — A will be said to be I')¢-continuous(directionally continuous
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or 7t-continuous) at a point (t,z0) € I x A , if for every ¢ > 0
there exists 6 > 0 such that

| @(t,x) — P(to, x0) [[pe< €eif to <t <tg+dand ||z —xg ||y
< M(t—t)

(ii) For an arbitrary n, £ € DRE, S C A, a sesquilinear-form valued
map ¥ : S — 2°051PSE)* will he said to be lower semicontinuous on
S if for every closed subset C' of C the set {s € S : ¥(s)(n,&) C C}
is closed in S.

We remark that if £, F, G, H are lower semicontinuous on S, then
the sesquilinear-form valued P is lower semicontinuous on S.

A multivalued generalization of Lusin property which is called Scor-
za - Dragoni property [14] employed in [6] is used to define the form
of lower semicontinuity in this work. The well-known Lusin prop-
erty is the following.

Definition 4:(Lusin’s property)Let X and Y be two separable met-
ric spaces and let f: I x X — Y be function such that

(i)t — f(t,u) is measurable for every u € X

(ii) w — f(t,u) is continuous for almost every t € I , I C R,.
Then, for each ¢ > 0, there exists a closed set A C [ such that
A\ A) <€, (X\is the Lebesgue measure on R) and the restriction
of f to A x X is continuous. N
Definition 5: A sequilinear- form valued map ¥ : [0,7] x A —
25¢s¢P2E)* 5 Scorza-Dragoni lower semicontinuous (SD-l.s.c.) on
[0,7] x A if there exists a sequence of disjoint compact sets J,, C
[0, T], with meas([0, 7]\ U, cn,,) = 0 such that W is lower semicon-

tinuous on each set J, x A.

If U is lower semicontinuous and convex-valued then by Michael se-
lection theorems, there exists continuous selection of W. But if the
convexity is removed and W is not decomposable valued multifunc-
tion then the existence of continuous selection is not guaranteed.
However, a non-convex analogue of Michael selection is Directional
continuous selection result in [4] and for infinite dimensional space
in [5]. We established in this work that such selection exists for
SD-lsc multivalued stochastic process.

For an arbitrary n,¢ € DQE | it U € pul,vF, oG, H appearing in
(1) are SD-Isc then the map (¢,x) — P(¢,z)(n, ) is SD-Isc.

A quantum stochastic differential inclusion will be said to be SD-
lower semicontinuous if the coefficients are SD-Isc.

3. MAIN RESULTS
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Theorem 1: For almost all ¢ € I, n,£ € DQE. Suppose the
following holds:
(i) The maps X — U(t,X)(n,§), ¥ € {uE,vF,0G, H} are non-
empty lower semicontinuous multivalued stochastic processes
(ii) The maps t — V(t, X)(n, &) are closed

(iii) 7+ is a topology on I x A with property (P).
Then the sesquilinear form valued multifunction, (¢, X (¢)) —
P(t, X(8))(n, €)
P(t, X () (0, &) = (uE) (L, X(1))(n, &) + (wF)(L, X (1))(n,€)
+ (0G)(t, X(1)(n, &) + H(t, X(¢))(n, )

admits a 7" -continuous selection.

Proof: P is non-empty , since each of ¥ € {uF,vF,0G, H} is non-
empty.

Therefore, P is a non-empty lower semicontinuous sesquilinear form-
valued multifunction.

We shall employ a similar procedure as in the proof of Theorem 3.2
in [5] to construct a 77 -continuous e-approximate selections P. of P,
hence by inductive hypothesis we obtain a 7F-continuous selection
P of P.

Let € > 0 be fixed , since X — P(t, X)(n, ) is lower semicontinuous
, for every X(t) € A, we choose point y,¢e x(t) € P(¢, X ())(n,&)
and neighbourhood Uy of X () such that

inf t) — Hl<eVX({)eU 4
mestenx e | 96X (1)~ vner (D) | Helx

Now , let (V,,)aepe be a local finite open refinement of (UX)X(t)e/T ,
with V,, C Uy, , and let (W,)aepe be another open refinement such

that cl(W,) C V, for all a € g°. By property (P), for each a , we
can choose a set Z, , clopen w.r.t. 71, such that

(W) C int(Za) C cl(Za) C Vi (5)

Then (Z,), is a local finite 77 clopen covering of A . Let < be a
well-ordering of the set ¢, define for each o € 3¢ |

o =2\ (U 2)

A<
Set O° = (£),), a € . By well-ordering , every x € A belongs to
exactly one set 25 where @ = min{a € ¢ : z € Z,}. Hence , O°
is a partition of A Moreover, since Z, is locally finite(wrt 7 and
therefore wrt 77), the sets [ J,_, Zx are 77 clopen. Hence O° is a
7T clopen disjoint covering of A such that, {cl(92)} refines (Vy)a.
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By setting yre , = yne.x. and Pe(t, X(1))(1,§) = Yne x.., Yo € [°
we have 77 continuous function P., which by (4), satisfies

inf P.(t, X(t ,E) — t) |<e€

ynE,P(t)GP(t,X(t))(né) ‘ ( ( ))(77 f) ynéJp( ) ’

Therefore , there exists an e-approximate selection P, of P.
Since € was arbitrarily chosen ,thus we have a 7 -continuous selec-
tion P of P. [J
Theorem 2: Suppose the following holds for an arbitrary n,& €
DRE, ¥ e {uE,vF,cG, H} :
(i) t = W(t, X(1))(n, &) are measurable for all X € A
(i) X — W(t, X(t))(n, &) are SD-lower semicontinuous with respect
to a seminorm || . ||, , for almost all t € 1
(ili) ¥ are integrably bounded, that is, there exists Ly (t) € L*(I)
such that, a.e. t € I, for all X &€ .Z,

inf < LY(1).
YEW (1,2)(n.€) [y 1= Lye(t)

Then the SD-lower semicontinuous quantum stochastic differential
inclusions

Lo X(0)€) € B(t, X(1)(n.£)

dt (6)
X(to) =X

has an adapted weakly absolutely continuous solution in the sense
of Caratheodory.
Proof: Since for arbitrary ,¢ € DQE, ¥ € uE,vF, oG, H are SD-
lower semicontinuous then P(¢, x)(n, £) is SD-lower semicontinuous,
Vo € .Z, a.e. t € I. The sequence of disjoint compact sets .J, =
Ny Y and meas(I \ Upend,) = 0 such that P(.,.)(n, §) restricted
to 2, = J,, x A is lower semicontinuous, with respect to || . ||,e.
Also, suppose L, = 5 max Lg’é(t), then a.e. t € I,

T Y 1< Loglt).
for all X € A
For each n > 1, we can apply Theorem (1) and obtain 7" -continuous
selections P, € P.
For an arbitrary selection ¢ from P, if we define

Po(t, X)(n,€) ift € Jy,

P(t, X)(n,€) = {g(@ X)(,€)  ift & Upendn
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then P is a 77-continuous selection of P, such that | P(t,z)(n, ) |<

Ly

¢(t) < Ly e, for every (t,X) € I x A, n,& € DQE.

Then by applying Lusin’s property to each bound of L, ¢, n € N
the set of solutions of 7" -continuous quantum stochastic differential
equations is the solution set of (6) in the sense of Caratheodory. O
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2]
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(11]
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Abstract. We study the existence and uniqueness of solutions of a
class of Quantum Stochastic Evolution Equations (QSEEs) defined on
a locally convex space whose topology is generated by a family of semi-
norms defined via the norm of the range space of the operator processes.
These solutions are called strong solutions in comparison with the so-
lutions of similar equations defined on the space of operator processes
where the topology is generated by the family of seminorms defined
via the inner product of the range space. The evolution operator gen-
erates a bounded semigroup. We show that under some more general
conditions, the unique solution is stable. These results extend some ex-
isting results in the literature concerning strong solutions of quantum
stochastic differential equations.
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1 Introduction

Several results on weak forms of solutions of the following quantum
stochastic differential equation have been studied. See [1, 3-7] and the
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references therein. The motivations for studying this class of equations
have been discussed in the references.

do(t) = Ut 2(8))d Ar (8) + V(£ 2(2))dA, (1)
Wt 2(8)dA s+ (£) + H(t, 2(8))dt,
z(to) = =z, t€1=[to,T] (1)

In Eq. (1), the coefficients U, V, W, and H lie in a certain class of
stochastic processes defined in [1], while the gauge, creation, annihila-
tion processes A, A f+,Ag and the Lebesgue measure t are well defined
in [2] and the references therein. z € B is a locally convex space.
Quantum stochastic differential equation (QSDE) (1) is understood in
the framework of the Hudson and Parthasarathy [9] quantum stochastic
calculus. It has found applications in many physical systems, especially
those that have to do with quantum optics, quantum measure theory,
quantum open systems and quantum dynamical systems (see [1-7]).

In [6], some properties of solutions of Eq. (1) were studied. Results
on the existence and uniqueness of solutions of this class of equations
were established in the space of the operator processes endowed with
the weak topologies. In [7], quantum stochastic differential inclusions of
hypermaximal monotone type were studied under some general condi-
tions and the existence of solution of an evolution operator connected
with these inclusions were established. Also, see [4] for some results on
evolution inclusions where the multivalued map P is of hypermaximal
monotone type. Further studies were carried out by [5] on properties
of solution sets of quantum stochastic differential inclusions of Eq. (1)
under the weak topologies. However, Ayoola in [1] investigated some ex-
istence properties on the space when endowed with the strong topology
under a more general Lipschitz condition on the coefficients (U, V, W, H).
Some new results including stability results were obtained. The results
in [1, 2] generalized some similar results in the classical setting. This
paper is concerned with the study of the properties of solutions of an
evolution equation defined on the space with the strong topology. In |3,
12] existence of mild solutions of evolution QSDEs was studied under
the weak topologies. Evolution problems have found practical applica-
tions in virtually all fields of sciences. See the references [11, 13-15] for
some applications of evolution problems. The results in the present work
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extend some existing results on strong solutions of Eq. (1) and extend
the solution space for which QSDE will be applicable. We will consider
some applications in our subsequent work.

2 Preliminaries

In what follows, the following evolution equation is considered.
dz(t) = A(t)z(t) +U(t,2(t))d Ar (t) + V (¢, 2(t))dAg(t)
+W (¢, 2(t))dA s+ (t) + H(t, 2(t))dt,
Z(to) = zp, t€T (2)

where A generates a bounded semigroup {S(¢) : ¢t > 0}. For details on
semigroup and their applications , see the references [8,10]. We adopt
in most cases the definitions and notations of the spaces used in this
paper from the references [1-3]. B is the completion of the topological
space (B,T), and 7 is the topology generated by the family of semi-
norms ||¢|le = ||¢€]|,¢ € IDRXF, where [|.|| is the norm of the space
R @T(L2(Ry)). The space B is the linear space of all linear operators
on R ® F(L%(RJF)). ID,F, and R are well defined in [1]. The nota-
tions and structures of the following spaces are from the references 1,
2]. ROL(L2(Ry)), Ad(B)ae, Li,.(B), L2(Ry), L(B), IDRE, Fin(IDQE).
ID,F, and R is well defined in [1].

Definition 2.1.

(i) ¢ : I — B is a stochastic process indexed by I = [0,7] C R,.

(ii) If ¢(t) € By, t € I, then ¢ is said to be adapted and we denote the

set of all such stochastic processes by Ad(B) .
i) &
) ¢

(t) € Ad(B)qc is said to be adapted, absolutely continuous.

(t) € L?OC(B) is said to be locally, absolutely p-integrable, where
(0, 00).

Since the evolution operator A generates a bounded semigroup
{S(t)}+>0, for each ¢t > 0, there exists a constant M > 0 such that
S|l < M.

(vi) Let 6 € Fin(IDRF) and z € B then, ||z||g = mazecyl|2||¢, where
the set {||.|ly : @ € Fin(IDRF)} is a family of seminorms on B and
Fin(IDRF) denote the set of all finite subsets of IDRFE. Also see Defini-
tions 2.5 and 2.6 in [2].

(iii
(iv
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Definition 2.2.
A stochastic process ¢ € L2 (B) is called a strong solution of the prob-
lem (2) on [ if it is absolutely continuous and satisfies

o) = St)do+ / S(t — $)[U(s, 6(5))d Ax () + V5, 6(5))d Ay (s)

to

+W (s, (s))dA+(s) + H(s, ¢(s))ds],
d(to) = o, t€l (3)

Deﬁniti~0n 2~.3.
® : I x B — B is Lipschitzian if

1@ (t,y) — @t 2)lle < K ()lly — 2lloge,

is satisfied for each ¢ € IDQE, where y, z € B, § € (ID&E, Fin(IDRF))
and K‘I’ : I — (0, 00) is a Lipschitz function lying in L}, (I). I =[0,T] C
R;.

Remark 2.4. Theorem 2.2 and Remarks (a) - (¢) in [1] hold in this
case.

For the remaining part of this paper, £ € IDQF is arbitrary, except
otherwise stated, the following result established in [1] will be used to
establish the major results.

Theorem 2.5. (a) Let p,q,u,v € L} (B) and let M be their stochastic
integral. If § € IDRE where { = d® e(B), o, 8 € LT,.(Ry) and t > 0,
then

< M(E> = /0 <1, {als), 7(5)B(s) >4 p(s)

+ < f(s),B(s) >+ q(s)

+ <a(s),g(s) >y u(s) +v(s)} > ds. (4)
(b) Let
K(T') = supg< < max{| (B(s), 7(s)B(s)) |, | (f(s5), B(s)) |, [ (B(s),9(s)) |,

[17(5)B(s)II%, Tlg(s)]1*}-
Then for T >0and 0 <t < T,

IM(1)¢]]? < 6K(T)2/0 e {lp(s)€l” + la(s)El* + [[u(s)€]”
+ ()€l ds. ()
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(¢) Let 0<s<t<T. Then

t
[1(MI(t) = M(s))¢]* < GK(T)2/0 e {Ilp(r)EN® + lla(r)El?
+ [Ju(mEl? + llo(r)l*ydr. (6)

Note 2.6. M is absolutely continuous, hence, M € L2 (B).

loc

3 Main Results

This section is dedicated to the main results on existence and unique-
ness of strong solutions of (2). Subsequently, except otherwise stated,
tel=1[ty, T] CR; and £ € IDRF is arbitrary.

Theorem 3.1.

Suppose that the coefficients U, V, W, H € LlQO (I x l’;’) are Lipschitzian.
Then for (tg, z) € I X A there exists a unique strong solution ¢ of equa-
tion (2) satisfying (o) = 2o0.

Proof. To prove the theorem, we make the following assumptions:

Hi. Let {©n(t)}n>0 be asequence of successive approximations of ¢ € B
and

Hs. @n(t), n > 1 define an absolutely continuous process in L7 (A).

Let T > tg, t € I be fixed. Then, we prove H; — Hs as follows.
For n > 0, we have

onirlt) = S(t)z+ / S(t— $)[U (s, 0n())d Ax (5)

to

+ V(s,0(5))dAg (s) + W(s, on(s))dAs(s) + H(s, on(s))ds].

By hypothesis, U(s, z0), V (s, z0), W (s, 20), H(s, z) € B, for s € [to, T]
while B

U(.20), V(. 20), W (., 20), H(., 20) € L2, (B).
Therefore, the quantum stochastic integral which defines ¢; (t) exists for
t € [to, T]. By Theorem 2.5, ¢1(t) € L? (B).

Hence, it implies that each R
U(s,0n(5)), V (5, 9(5)), W (5, n(s)) and H(s, pu(s) € L2, (B).

This proves assumptions Hy — Ho.

5
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Next, we show that the sequence of successive approximations converges
as follows:

| onsi(t) = onl®) e = ||/St—s< (5, 0n(s))

—U(s; pn-1(5)))d Ax (s)
+H(V(s,() = V(s on-1(5)))dAg (s)
+(W(s,0n(s)) = W(s, pn-1(s)))dAs(s)
+(H (s, on(s)) = H(s, pn-1(5)))ds]|¢-
By Theorem 2.5 and (v) of Definition 2.1, we get

I ont1(t) = @nlt) I} < 6M2K(T)2/ ¢ {IU (s, ¢n(s))

to

~U(s, pn—1(5))|I2

HV (s, 0(5)) = V (s, on1(3))I[2

HIW (s, 0n(3)) = W (s, pn-1(s))lIg

+H||H (s, pn(s)) = H(s,on-1(s))l[E}ds.  (7)
By definition 2.3, we have

I M(s, pn(s)) = M(s, 0n-1(5)) lle < K () || 9n(5) = 0n-1(5) llone
for each M € {U,V.W, H}. Thus, there exists &y € On(€) satisfying
I on(s) = n-1(5) llopge =l Pn(s) = Pn-1(s) lley, -
Using (7), we obtain

I ons1(t) = @nlt) I < NC(T)Ls/ '™ || @n(s) = n-1(s) [, ds

to

= NC(T)Lge

t
x / e || on(s) — onoa(s) I, ds.  (8)
0

Where

I ons) = pnna(s) o=, max [ @n(s) = @na(s) g, - (9)
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and N = M?, C(T) = 6K(T)?,
Le =ess sup | Ke(s) = Z K%V[(s)2
s€[0,T] Me{U,V.W,H}
Continuing the iteration and replacing & with & in (9), yields
| pnt1(t) = n(t) | < N*C(T)?LeLe, ¢

t S
<[ e = onale) [, d'ds
to Jto
t S1 Sp—2
SN”C(T)"M(E)”et/ d31/ dSQ.../ dsp—1
to to

Sn—1
x / e | 91(5n) — @ol(sn) |2 sy (10)

to

where M,,(§) = max{L¢ j,j = 0,1,...,n — 1}, M(§) = sup,en{Mn(§)},
and L¢ j, 7 =0,1,...,n — 1 are positive real numbers.

Since the map s — ||p1(s) — 2ol|¢ is continuous on I, we obtain,

Re, = supye; 91(5) — 20lle, < 00 and put Re = suppen{Re, } in (10) to
get

n Tn
| @us1(t) = on(®) I3< INCTIME)"eT—RE,n = 0,1,2, ..
For n > k we get,

I on41(t) = Prra(t) lle= [Zmaprr (Pmr1(t) = om(t)) e

<Ykt lomai(t) — om(t)|le

<5, Z <[NC(T)M(£)]me)§<OO.

m!
m=k+1

Showing that ¢, (t) is a Cauchy sequence in B and converges uniformly

to ¢(t).
Now since ¢, (t) is adapted and absolutely continuous, the same is true

for ¢(t).
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Next, we show that (t) satisfies Eq. (2).
Let o(to) = zo and by (8), there exists £ € IDQF such that

| t S(t = 9)[U(s,n(5))d Ax (s) + V (s, on(s))dAg (5)
+ W (s, 0n(s))dAs (s) + H(s, ¢n(s))ds]||Z
=] St =9)[U(s, ¢(s))d Ar (s)

+V(s,0(s))dAg (s) + W (s, 0(s))dAs (s)
+ H(s,p(s))ds]||

=l | St —s)(P(s,0n(s)) — P(s, 0(s)))ds][z

to

t
< NC(T)Lg¢e" x / e’ || pn(s) —p(s) Hg ds — 0 as n — oo.
to

Since @, (s) — ¢(s) in B uniformly on [tg, T], we have

p(t) = lim pni(t)

n—00
t

= S(t)zo + 11113010( t S(t—s)(U(s,pn(s))d Ar (s)

+ V(s on(s))dAg (s)

+ Wi, on(s))dAs(s) + H(s, pn(s))ds)
= S(t)zo + t S(t—s)(U(s,p(s)d Ar (s)

+ V(s,0(s))dAg (s)
+ Wi(s,@(s))dAs(s) + H(s,p(s))ds),,t € I.

This shows that () is a solution of Eq. (2).

Uniqueness

Suppose that y(t),t € [to, T] is another adapted absolutely continuous
solution with y(t9) = 2o, then just as we established the above result,
we obtain

I o(t) = (0 I3 INCTIMOIe" o sup || o(t) = (0 [3< 0. (1)
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By the right hand side of Eq. (11), we conclude that for n € N,
| o(t) —y(t) ||e= 0 and ¢(t) = y(t) on IDRXF, t € I. Hence the solution
is unique.

4 Stability

In this section, we show that under the condition (v) of Definition 2.1,
the solution of Eq.(2) is stable.

(a) let the coefficients U, V, W, H satisfy the conditions of Theorem 3.1
and let z(t),y(t), t € [to, T] be solutions of Eq. (2) such that z(t9) = 2o
and y(to) = Yo, 20, Yo € B. The solution z(t) is stable under the changes
in the initial condition over a finite time interval as follows:

(b) Let L¢, N and C(T') be constants such that
Le = esssup K¢(s), C(T) = 12K(T)? and N = M?
sel

where K (T') is as defined in Theorem 2.3 and ||.S(¢)||¢ by (v) of Definition
2.1.
(c) Define the function K¢(s) as

Ke(s)= > (KM(s)?
Me{U,V.W,H}

Theorem 4.1. Let the conditions of Definition 2.1 hold and let € > 0
be given. Then there exists § > 0 such that if ||zo — yolls <9,
then [|z(t) —y(t)| <e Vt€[0,T].

Proof:
Let z,(t),yn(t), n = 0,1,... be the iterates corresponding to zp, yo re-
spectively. Let zo(t) = 2o and yo(t) = yo, 0 < ¢t < T. Then we get

I 2n41(8) = Yn41(2) lle < 1S(E = 5)(20 = vo)lle

+ (W(s, zn(s)) —
+ (H(s, 2n(s)) = H(s, yn(s)

9
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So that by applying Theorem 2.5 and condition (v) of Definition 2.1, we
obtain

I Zot1 () =yna (8) 1< 204220 — yol 2
+ 20| [ S(t = $)[(U (s, 2(s)) = U(s, yals))d Ar ()

(V(s,2(5)) = V(s,yn(5)))dA; (5)
(W(s, 2n(s)) = W(s,yn(s)))dAs(s)
+ (H (s, 2n(s)) — H(s,yn(s)))ds]||Z

_|_
_|_

I 2n1(t) = yns1(t) IE < 2N|l20 — yol[2

L NCT) / et U (5, 2(5)) — U (5, yn(5))| 2

V(s 2(8) = Vs, 9a(9))] 2
I (s, 2a(s)) = W (s, ya(s))]12
+ (H(s,2a(s)) — H(s, y(s)) |12} ds.

Since Definition 2.3 also holds for the coefficients U, V, W, H, we find
elements {nve € Om(§) € Fin(IDRE), M € {U,V,W, H} such that

| Zn+1(t)=Ynt1(t) IF< 2N]|20 — yol|f + NC(T)
t

X / e YT KM (s1)? |zn(s1)) - Yn(s1))|[2yr 1 )ds1
to Me{U,V,W,H}

< 2N/|z0 — yol|?

t
FNC@Leet [ & n(sr) = alon) s (12

to

where & € v M € {U, V.W, H}} satisfies

2 _ 2
| @n(s) = @n-1(s) llg, = e | on(s) = Pn-1(5) llgygs s
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where s € I.
Also, if we have & € IDRF then,

I 2n(s1) =yn(s1) 2 < 2N[I(20 — o)l

t
b ONC@Le [ etz (52) = par (o) s

S1

By (12), we obtain for t € [0, 7],

I 2ns1(t) = gnea () 2 < 2N (20 — y0)I¢
t
+ 2NC(T) ||z0 — yngLget/ e *tdsy
0

2 2
+ N2O(T)2LeLe et
/ / 92|01 (52) — i (52) |2, dsds.

Continuous iterations yields,
I 201(8) = ynr () IF < 2N |20 — wollg + 2NC(T) [0 — gollg, Lee"t
t S1
b 2NPCP oo =l LeLee” [ [ dsads
0o Jo
9 t S1
+ AN a0~ ol LeeLee” [ [
S92 S1
/ / d83d82d81
o Jo
t
+ ...+N”HC(T)(”“)eTLgL&L&...Lgn/ /
0 Jo

Sn
/ ||Zo(8n+1) — y0(8n+1)| |§n+1d51d52d83...d8n+1.
0

X

X

Now, by letting K(§) = sup,,en{Le¢, Le,, Leys -, Le,,
N € {€,&1,82, ..., &ny Ent1} so that if

HZU - yOHnn - max{||zo - yo”gj J=0,1,...,n+ 1}7
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we obtain
n+1 Tm
| zns1(t) = yna(8) 1E < 2¢7 |20 — woll2, Z[NC(T)K(@]’”W
m=0 ’
< 2]z — yOHin e(NC(T)K(§)+T) (13)

Thus, by taking the square root of both sides of (13) and letting n — oo,
we obtain ||z(t) — y(t)||§ <e

Take 0 = e[26<NC(T)K(5)T+T)]_%, for all t € [0, 7], and the desired result
is obtained.

Remark 4.2 If N < 1, we obtain the results in [1].
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FURTHER RESULTS ON THE EXISTENCE OF CONTINUOUS
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ABSTRACT. We prove that the map that associates to the initial value the set of solutions
to the Lipschitzian Quantum Stochastic Differential Inclusion (QSDI) admits a selection which is
continuous from the locally convex space of stochastic processes to the space of adapted and weakly
absolutely continuous solutions. As a corollary, the reachable set multifunction admits a continuous
selection. In the framework of the Hudson-Parthasarathy formulation of quantum stochastic calculus,
these results are achieved subject to some compactness conditions on the set of initial values and on

some coefficients of the inclusion.
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1. INTRODUCTION

This work is concerned with further investigations of the existence and appli-
cations of continuous selections of solution sets of quantum stochastic differential
inclusions (QSDI). In the context of classical differential inclusions defined in finite
dimensional Euclidean spaces, such investigations have attracted considerable atten-
tion in the literature. Some well known results on continuous selections and their
applications in the finite dimensional Euclidean settings can be found in [1, 2, 14,
15, 18, 20, 22]. As in [8, 18, 20, 22], selection results have been used among other
things for the interpolation of a given finite set of trajectories of classical differential

inclusions.

However, in the non commutative quantum setting, investigations of the exis-
tence of continuous selections and their applications have not received a comparable
attention in the literature. In the framework of the Hudson and Parthasarathy [17,
19] formulations of quantum stochastic calculus, we established in our previous work
[4], some continuous selections of solution sets of quantum stochastic differential in-
clusion (QSDI) defined on the set of the matrix elements of initial points with values
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in the set of matrix elements of solutions. However, on this occasion and in the same
framework of quantum stochastic calculus, we establish the existence of a selection
map continuous from a compact set of initial values contained in the space of quan-
tum stochastic processes into the locally convex space of adapted weakly absolutely
continuous quantum stochastic processes. In addition, as a corollary, we deduce that
the reachable set multifunction admits a continuous selection. This work, therefore,
complements our results in [4] where the set of the matrix elements of solutions and
the reachable set respectively admit continuous selections and some continuous rep-

resentations.

The proof of our main results here adapts the techniques employed in Cellina [1]
in a way that is suitable for the analysis of QSDI where the solutions live in certain
locally convex spaces. Our main tools in the construction of the selection are some
suitable use of Liapunov’s theorem on the range of vector measures (see [1, 15, 16])
and Ekhaguere’s existence result [11] for the solutions of QSDI (2.3). The result is a
generalization of Filippov’s extension of Gronwall’s inequalities to solutions of QSDI
(2.3).

The plan for the rest of the paper is as follows: In section 2, we present some
fundamental results, notations and assumptions. The main results of the paper are

reported in Section 3.

2. PRELIMINARY RESULTS AND ASSUMPTIONS

In what follows, we adopt the notations, formulation and the frameworks as
reported in [3, 4, 11, 12, 13]. Detailed definitions of various spaces that appear below
can be found in [11]. In the sequel, 7 is a fixed Hilbert space, D is an inner product
space with R as its completion, and I'(L2(RR.)) is the Boson Fock Space determined
by the function space L%(RJF). The set E is the subset of the Fock space generated by
the exponential vectors. If A is a topological space, then we denote by clos(N) (resp.
comp(N)), the family of all nonempty closed subsets of A/ (resp. compact members
of clos(N)).

In our formulations, quantum stochastic processes are A-valued maps on [to, T.

The space A is the completion of the linear space
A= L, (DGE, R ® T(LA(R,)))

endowed with the locally convex operator topology generated by the family of semi-
norms {x — ||z|l,e = [(n,z€)], 1, € DRE}. Here, A consists of linear operators
from D@E into R ® I'(L2(R4)) with the property that the domain of the adjoint
operator contains D®E. We adopt the notation and the definitions of Hausdorff

topology on clos(A) as explained in [11]. The Hausdorff topology is determined by
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some family of pseudo-metrics. On the set C of complex numbers, we employ the met-
ric topology on clos(C) induced by the Hausdorff metric p. Thus for A, B, € clos(C),
p(A, B) is the Hausdorff distance between the sets and for arbitrary pair 7, £ € DRE,

N, M € clos(A), ppe(N, M) denotes pseudo-metrics as in [11, 12, 13].

A quantum stochastic process @ : [tg, T] — A will be said to be weakly continuous
on the interval I = [to,T] if for each pair n,§ € DQE, the map t — ,.(t) is
continuous. Here, ®,¢(t) := (1, ®(t)€). We shall denote by C[I, A] the set of all
weakly continuous quantum stochastic processes on [ty, 7] and for each ® € C/[I, A],

we set

2.) 43¢l = sup [@,¢(8)] = sup [ (D).

By employing the symbol Ad(.A),. to denote the set of all adapted weakly continuous

stochastic processes, then we have the following set inclusion
Ad(-[l)wac g Ad(“zi)wc g C[I’ "2{]’

since all weakly absolutely continuous stochastic processes are weakly continuous.

As in [11], we denote by wac(A), the completion of Ad(A)ye. in the topology

generated by the family of seminorms
T

(2.2 Bl = [0(ta)lhe + | 1500210 s

for each ® € Ad(A)yqe and arbitrary 7, £ € DRE.

The existence of the continuous selections which we study in this paper concerns
solution and the reachable sets of quantum stochastic differential inclusions in the

integral form given by:
X(t)ea+ /0 (E(s,X(s))d Ar (s) + F(s,X(s))dAs(s) + G(s, X (s))dA] (s)
(2.3) +H (s, X(s))ds), t € [to, T,

where the coefficients E, F, G, H are continuous and lie in the space LZ ([to,T] X
A))imvs, frg € L3 (Ry), m € L3 1.(Ry). Here, B(y) is the space of bounded
endomorphisms of v and (¢, a) € [ty,T] x A is a fixed point.

For any pair of 1, € D®E such that n = c®e(a), £ =d®e(f), o, € L?Y(R+),
c,d € D, as in our previous works in [3, 4, 5, 6, 7], we shall in what follows, employ
the equivalent form of (2.3) as established in [11] given by the nonclassical ordinary

differential inclusion:

(2.4) L0 X () € PUXO)0,E),  X(to) =, 1€ [t0, 7]

The multivalued map P appearing in (2.4) is of the form

P(tv $)(777§) = <777 Paﬁ(tvx)£>
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where the map Pag : [to, T] x A — 24 is given by
P.s(t,x) = pap(t)E(t,x) + v5(t)F(t, x) + 0, (t)G(t, ) + H(t, ).
The complex valued functions piag, Vg, 04 : [to, T] — C are defined by
paplt) = (al8), T80}, va(t) = (£, B(E)

0a(t) = (a(t), g(t))s, t € [to, T
for all (t,z) € [0,T] x A and the coefficients E, F, G, H belong to the space
L2

2 ([to, T] X A)mos of multivalued stochastic processes with closed values.

As explained in [11], the map P cannot in general be written in the form:

P(t,2)(n,€) = P(t, (,x€))

for some complex valued multifunction P defined on [ty, T] x C, for t € [to,T], z €
A n e D®E. Under the condition of compactness of the values of the map (¢, z) —
P(t,x)(n, &) for arbitrary n, £ € DRE, we prove that the map which associates to the
initial point a € A, the set of solutions S™)(a) to (2.4) admits a continuous selection
from the space A to the completion (denoted by wac(A)) of the locally convex space
of adapted weakly absolutely continuous stochastic processes indexed by elements
of the interval [ty,T]. In particular, we show that the map a — R®)(a) admits a
continuous selection, where R(")(a) is the reachable set at t = T' of the QSDI (2.3).

To establish our main results, we need the notion of partition of unity subordinate
to any covering of a compact subset of A corresponding to an arbitrary pair of vectors
in [E, the subspace of the Fock space generated by the exponential vectors. In what
follows, unless otherwise indicated, we consider quantum stochastic processes defined
on a simple Fock space. That is we shall take the initial space R = C so that
R@I(L2(Ry)) = (L2(Ry)) and DQE = E.

Definition 2.1. . Let A be a compact subset of the locally convex space A and let
{€;}ics be an open covering for A with a finite sub covering {€;, i =1,2,...,m}. A
family of functions {IL,¢,;(-)}, ¢ = 1,2,...,m corresponding to an arbitrary pair of
elements 7, £ € [E defined on A is called a Lipschitzian partition of unity subordinate
to the finite subcovering if:

(1) The map I, ;(-) is Lipschitzian for alls = 1,2, ..., m. That is there exist constants
L, > 0 such that for any pair a, a’ € A,

|Hn§,i(a) - Hni,i(a/)| < L%Ha - a/Hn&'

(2) Iei(a) > 0 for a € ;A and I ;(a) = 0 for a € A\,

(3) For each a € A, > Tl (a) =1.
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Lemma 2.2. . Let A be a compact subset of the space A. Then, there exists a family
of Lipschitzian partitions of unity subordinate to any finite subcovering of an open

covering for the set A.

Proof. We outline the proof as follows: Let {€;},7 = 1,2,...,m be a finite open
subcovering of an open covering {€; };c; of A. First we claim that the map g, : A—
R, defined by

e (7) = dye(2,Q), Q € clos(A),

satisfies for any pair z1, 29 € A,

(2.5) |Gne (1) — Gue(w2)| < |21 — 22| e

Inequality (2.5) can be established as follows: Let € > 0 be given. Since d,¢(z, Q) =
inf,cq ||z — yl|ne, then there exists y; € @Q satisfying

|21 = y1llpe < de(z1, Q) + €.

Hence,

dn& ($27 Q)

IA

|22 — yi1llne
< lzg = 21lne + 21 — yallne
<l — 21 lpe + dye(1, Q) + €.

Interchanging x; and x4, we have

|d17§($17 Q) — dn5($2vQ)| < |lzy — x2||,7§ + €

Inequality (2.5) follows since € is arbitrary.
For ¢ =1,2,...,m, define the family of functions ¢,¢, : A — Ry by
Gne.i(@) = dye(a, A\L)
and functions II,¢; : A — R, defined by

dne,i(a)
Z;nzl ne.j(a)
For at least one 7 € {1,2,...,m}, a € Q;. Hence, Z;nzl Que,j(a) > 0. Also, by

the definition of the seminorm || - [|,¢ and the properties of the exponential vectors

(2.6) e i(a) =

n,§ € E, the value ||z|/,¢ can never be zero when z is not a zero process. This
follows from the fact that for any pair of exponential vectors n,& € E such that
n=-e(a), £ =e(B), a, € L2(Ry), we have (e(a),e(8)) = elP) (see [6] for some
details). Consequently, (2.6) is well defined. The rest of the proof follows a similar
argument as in the proof of Lemma 2.1 in [4]. This shows that {IL;(-)}7, is a family

of Lipschitzian partition of unity subordinate to the covering. O
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In the proof of our main results, we shall make use of the following maps that

are associated with the family IL,¢;(-)) given by (2.6). Define the maps

(2.7) ope(i,a) = > Myej(a), a€ A ie{l,2,...,m}.

1<5<i
Definition 2.3: Let € > 0 be fixed. Then the common modulus of continuity ©,.(e)
depending on the pair 7,{ € E, of the map a — 0,¢(, a) is defined by:

(2.8) O,¢(e) = sup{|oye(i,a) —oye(i,a')| s a,a’ € A, |la—d'||,e <€, i =1,2,...,m}.

Remarks: As in the case of the modulus of continuity of real valued functions defined
on the real line, (see [21, p. 2], for example), the modulus of continuity ©,(€) defined

by (2.8) satisfies the following inequalities as consequences of the definition. That is,
Oue(€) < Ope(€’), whenever e < ¢

and

(2.9) Ope(Ae) < (14 X)Oye(e), for any positive number A.

These follow directly from (2.8).

In what follows, we shall employ the space of complex valued sesquilinear forms
on (D®E)? denoted by Sesq(DRE) and assume that the multivalued map (¢, z) —
P(t,z)(n, &) appearing in Equation (2.4) satisfies the following conditions:

S(a). P:QC [tg, T] x A — 25¢¢P2E) defined on an open subset Q C [to, T] x A
bounded on € by constants M, that depend on n,¢, i.e

S(b). The map t — P(t,z)(n, &) is measurable for fixed z € A and for all , £ € DQE.
S(c). The map (¢t,x) — P(t,x)(n,&) is Lipschitzian with Lipschitz function K, (t)
lying in L} ([to, T]), i.e. for z,y € A

p(P(t,x)(n,8), P(t,y)(1,€)) < Kne(t)]lx = yllne.

S(d). The set P(t,x)(n,&) is compact in C, the field of complex numbers, for all
(t,x) € 2, n,& € DRE.
S(e). There exists a compact set A C A such that V5, ¢ € DRE, the set

{(t,a+v(t—ty) :a € A, ve Asuch that |vl,e < My, t € [to, T]} C Q.

Moreover, we set

t
(2.10) Ye(t) = / Ke(s)ds.
to
We shall assume that the interval I = [ty, T satisfies the following:

(2.11) Aye = 3(e¥e Vel 1) < 1; V17, & € DIE,
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T
}/;75:/ Kng(s)ds
to

T
Tye = / Yo Yae) g

to

where

In what follows, we set

3. ESTABLISHMENT OF THE SELECTION MAP

By a solution of QSDI (2.3) we mean a quantum stochastic process ® : [to, T] — A
lying in Ad(A)wae () L3, (A) satisfying QSDI (2.3). We denote by S™)(a), the set of
solutions of Lipschitzian QSDI (2.3). It has been established in [11] that under the
conditions S(a) — S(e), this set is not empty. Similar existence result under a general
Lipschitz condition has recently been established in [3]. Our main result below shows

that there exists a continuous map ® : A — wac(A) such that for each a € A,

®(a) € ST (a) C wac(A).

Theorem 3.1. Suppose that the map (t,x) — P(t,x)(n,&) satisfies the assumptions
S(a)-S(e). Then there exists a continuous map ® : A — wac(A) such that for every
a € A, &(a) is a solution to the QSDI (2.4).

Proof. The proof shall be presented in six parts in what follows. The pair of elements
1n,& € E are arbitrary unless otherwise indicated. We note here that it would be
enough for us to establish the existence of the continuous selection by establishing
appropriate estimates in the seminorms that generate the topology of the spaces A
and wac(A). A justification for this can be found in [23, p. 5.

Part A: We claim that there exists two sequences of adapted stochastic processes
" (a), ¥™(a) : [to, T] — A such that
(i) U"(a) € S (a); ®"(a) is adapted weakly absolutely continuous
such that CI)"(a) (to) = a. Setting ®p.(a)(t) := (n, (P"(a)(t))E), then,
(ii) | @5 (a) — Uie(a)lle = sup; [(n, (2" (a)(t))€) — (n, (W™ (a)(t))€)] < Myel ey

(iii) For every e > 0, there exists d(€) = d(e,n,1,§) > 0 and a function R (a,¢) :
I — R, satisfying

(3.1) /1 ne(a,€)(s)ds < 2M,ee

such that p p
- (@ (@)(0)8) — 0, (") (1)) < Rig(a, ) (1)

whenever ||a — a'||,,¢ < d(e).
(1) [0 (27 (@) (1)€) — (0, (" (@) (1)6)] < BMeDyeh e Kog(0)e¥<), > 2.

(V) [@"(a) = " (a)lye < BMpelyejct, n >3,
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Part B: We apply mathematical induction as follows: Set ®!(a) = a. Then
trivially, ®'(a) lies in Ad(A)yqe. Also by the boundedness of the map P,

d (%@% (@(a)(1)8), P(t, <1>1(t))(77,€)) = d(0, P(t,a)(n,£)) < M,

By the existence results of Ekhaguere [11], there exists ¥'(a) € S™)(a) such that
vt € [to, T,

t
12 (a)(t) — ¥ (a) (®)lne < / OO D Myeds < Myelye.

to
The above shows that ®!, W! satisfy items (i), (ii) in Part A, with n=1. Ttem (iii)
also holds by putting Rng(a €) =0 for n=1.
Assume that we have defined ®¥(a) and V¥ (a) satisfying items (i) — (iii), for v =
1,2,...,n — 1. We claim that we can define ®"(a) and ¥"(a) satisfying items (i) —
(iv) for n > 2.

Part C: For notational simplification, we will denote ®"~! by ® and ¥"~! by W.

The map &, : A — C[I,C], a — P,¢(a) is uniformly continuous on account of our
assumption in Part A above. This can be shown as follows:
Let 7 > 0 be a real number satisfying r < o(I'yeA)s 1), where § is defined in Part
A, item (iii) above. Then @/, a” lying in the set Bla,r] = {x € A : ||z — a||.p <
r, Vk,¥ € DQE} implies that |ja — a'[[,e <r <6 and ||a — a”||,e < 7 < 6.

By item (iii), Part A,

i (@) (0)E) — 5 0, (B ()6 < B (0, )(1)

and

0, (2(a)(0)€) — 5 (0, (B(a"(1)6)] < R (@ ) (1)
so that
(32 &, @) (0)E) — &, (Bl (1)€)] < 2855 (a,€) (1),

But by the absolute continuity of the map t — ({(n, ®(a’)(t)&) — (n, (a”)(t)E)), we

have

[, (8(a)(0)¢) OS]
(33) - | / = (. (@) (5)€) — (i, (2(a"(5))€)) s
Hence from (3.3) and using (3.1)

(0 2(a)0E) — (1.9 OS] <2 [ B (o, 0))ds < 4Mee.

If r S %M%F%A” 2 then ||CL —CL”||,7§ < 2r < MngrngA

ng
() (1) — (") (D)l < 5

e 2 implies that

Myelpe A2,
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where € is small enough so that

An 1 An 2‘

1 L
€< pplehne < 3lne

Consequently, we have for o', a” € Bla,r]
19,6(a') = Bela)] < 5 MyeTeh™
Our claim of uniform continuity of the map a — ®,¢(a) follows.
Let {B(a;,r),i = 1,2,...,m} be a finite open cover of the compact set A, a; €
AViand ILe,; : A — Ry, a partition of unity subordinate to the cover. Here
Bla,r)={z € A: ||z — a|lw < r,Vk,9 € DQE}
and

S Mesa) =1, Myei(a) >0, Yae A Blai,r)

The existence of such family of Lipschitzian partition of unity follows from Lemma 2.2.

Next, we define

one(j,a Z I i(a) and W,(t) = ¥(a;)(2).

1<i<y
Let § > 0 be such that L= to = m’, an integer and § < 5 F el

The subintervals
J(G)=Tlto+ (j — )b, to +jb), j=1,2,...,m'

form a partition of the interval I = [ty,T]. Corresponding to an arbitrary pair of

elements 7, ¢ € E, we consider the family of complex valued maps on [ty, T]) defined
by:

d | .
(34)  Dygaglt) = T (0 WO LB, i=12..om; j=1,2....m,

where I;(;) is the characteristic function on the set J(j). For a € [0,1], let {B(a)}
be a nested family of measurable subsets of the interval [ty,T] such that B(0) =
0, B(1) = [to, T] satisfying

(3.5) / Dyej(t dt—a/ Dyess(O)dt, p(B(a)) = a(T — ty).

Such a family exists by a Corollary to Liapunov’s theorem (see [1, 15]).

Since ¥; € S™)(a;) then as shown in [11], there exists processes V; : I — A lying
in L (A) such that ;(t) = a; + ft s)ds and

loc
d

=0 W) = (. Vi()S)

It follows from (3.4) that
Dn&i,j(t) = <777 ‘/Z(t)]J(j)(t)g% 1= 17 27 cee, My j = 17 27 R m/'
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Hence by (3.5) and putting
Vi) =Vit) Lyp(t), i=1,2,....m, j=1,2,....m/,

we have
T
(3.6) / Vi (t)dt = a/ Vij(t)dt.
B(a) to

Next we define the stochastic process ®"(a) : [to, T] — A by

(37) =a-+ Z/ [B(ong(z a))\B(ope (i—1 a))(S)dS,

with its matrix element given by

(@@ = 0,06+ 3 [ 0. 0D ot s

We remark that the process ®”(a) given by (3.7) lies in wac(A) since each V; € L (A)

and in addition, ®"(a) is an adapted and weakly absolutely continuous process.

To show that ®"(a) satisfies item (iii) of Part A, we note that as in the proof
of the only Theorem in [1], 4(n, ®"(a)¢) and 4 (n, ®"(a’)¢) differ only on the subset
E' C [to, T] given by

U{ (ne (i, a))\B(oye(i — 1,a))) A(B(oye(i, ')\ B(oye (i — 1,d'))) }
and that

(3.8) E' [ J{B(oye(i, a) AB(oe (i, ')},

i=1
where for any two subsets S, B of [tg, T], SAB := (S U B)\(S N B).

Asin [1], we fix € > 0 and let ©, = ©,¢(€) be the common modulus of continuity
of the map a — 0,¢(7,a), given by (2.8). Then, whenever ||a — a'[|;c < O,¢(55), the

superset in (3.8) is contained in the set

€

(39) B(0.6) = J{Bloeliva) + )\ Blogliva) = 5}

m
=1

and the total measure of E”(a,¢€) is bounded by € or

(3.10) /[E//(&E) < €.
I

The foregoing assertion follows from the fact that if

€

la —a'||lpe < @nf(%

),
then
€

—)> < O (Oe(e)) -

00e(i,a) = 03¢ ,0')| < Oy (Onel5—
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Since ©,,(€) is positive and finite, we can write O,¢(€) = A,¢c€ for some \,¢ > 0. Then,
by (2.9),
: _ €
|ome (i, @) — ome (i, @) < (14 Ane)hee = 5 —
Thus,

. . €
(311> |O',7§(Z, CL) - Uﬂﬁ(z7 a/)‘ < %7

for some positive number \,¢ satisfying the algebraic equation
1

2 —
>\n§+)\ng—%—0.

The claim follows by employing (3.11) and the property of the nested family of sets
{B()}-
Consequently we have

9" @)1 — £ 0, 8 (@)OE)] < 2T (1)

so that item (iii) in Part A follows with
€

0(€) = One(5 ) and Rye(a, €)(t) = 2Melpr(ae (1).

Part D: We estimate here the pseudo-distance of ®"(a) from the set of solution
ST (a). To this end, let t € [tg + 7d,to + (r + 1)5)). At the point ¢ = ¢y + rd, the
integral in (3.7) can be written as

to+rd
/ Vi($)IB(0e (i,0)\ B(ope (i—1,0)) 48

to

Yy JRC I

i I<r

= ZZ/V[ IBgnéza M\B (o (i— la))( )d

i I<r

-y Vials)ds

i I<r B(oye (i,a))\B(ope (i—1,a))

- Zzﬂnﬁ,i(a)/lvi,z(S)ds,

I<r i

= D) Me(@){Wilto +16) — Tilto + (1 — 1)0)}

i I<r

= Zﬂnfz H{WUi(to +176) — U,(to) }-

This follows from (3.6) and the definition of (-, -).

Hence, we have

d"(a)(ty+ 1) —a = Z ILe.i(a)(Wi(to +76) — a;)
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For any j € {1,2,...,m}, we can write
18" (a)(t) = W;(@)|lne < 19" (a)(to +70) = U;(to + 70)[lne
(3.12) + [19"(a)(to + 70) — @™ (a)(t)llne + 1W;(t) = ¥;(to + 70)[lne
Since
& <0, @ (@))€ > | < Mye

and
d
@
by our choice of d, the sum of the last two terms in (3.12) is bounded by %M%F%AZ{ 2,
Hence, from (3.12)

1" (@) (t) = ¥;(t)[lne < lla — Z Mg i(a)ail|ne

<, W5 (1)€ > | < My,

1 .
(3.13) 1 D Mg i) (Wilto +78) = W(to +76)) llng + 5 MaeTnehpe

By our choice of r in Part C, whenever II,¢;(a) > 0, then
1 n—2
la — aillpe < gMnfrnﬁAng :

This estimate also holds for the first term at the right hand side of (3.13). Further-

more,
| Wi(to + 1) — Wi(to + 1) ne
< |Wito +1rd) — ®(as)(to + 16) e + [|®(as)(to +76) — P(a;)(to + 19)|lne
(3.14) + [|®(a;)(to + 1) — W;(to + 76)||pe-

When both IT,¢ ;(a) > 0 and 1L ;(a) > 0 and by the choice of r, the second term on
the right of (3.14) satisfies

1
(3.15) 1®(a:)(to +r0) — D(ay)(to + rd)|lne < gMnsfnﬁA"_2

n§

so that by item (ii) in Part A and the recursive assumption, we finally have
(3.16) 19" (a)(£) = () lne < BMyelneA™,

Equation (3.16) holds for every j such that IL,¢ ;(a) > 0. By the definition of ®"(a)(t)

given by (3.7), at any point ¢ except on a set of measure zero in I,

d d

2 (1@ (@)($)¢) = = (0, T(1)¢)

for some j such that IL,¢ j(a) > 0.
Since ¥; € S@)(a;), then
d

2 5(t)E) € P(t, 5(t) (n, €)
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and therefore we have

d
(9" @O, PLI@ONDO) < p (P00, P8 @(0)(0.€)
< Kpe(@)[195(2) — " (a) (£)]|ne
(3.17) < 3Mnfrn£AZ§_2an(t)
on account of (3.16) and the fact that the map (¢t,z) — P(t,x)(n, &) is Lipschitzian.
We notice that estimate (3.17) is independent of j and therefore holds on I = [ty, T'.

Again by the existence result in [11], there exists a stochastic process ¥™(a) € ST (a)
such that

(3.18) 197 (a) () — D" (a) (t)|lne < 3MyelpeAne (€M) — 1) < Myl yeAne
and

d, d, .
(3.19) Iﬁ@% U (a)(t)E) — %07, O™ (a)(1)€)] < BMyelye Al Ke (£)e¥ e

Inequalities (3.18) and (3.19) prove items (ii) and (iv) in Part A for all n > 2.
Part E: It is now left for us to show that if items (i)—(iv) hold up to n — 1, then

item (v) holds for n. We use the same notations as before to fix any ¢ and let j be

such that
d

d n B
@ 0.0 (@)06) = & (n.0,0)6)
so that I, ;(a) > 0. Then we have

_d . d
—(n, @""Ha)(t)¢ )|—|—<n, (€)= —(n, 2(a)(t)€)|
d d
< |Z . N .
<19 0 w,006) ~ L. 2a)(06)
d d

1, B(a)(1)8) — -, Da)(DE)
By item (iv), the first term in (3.20) is bounded by 3Mn§Fn5AZE_2Kn§(t)eyﬂf(t) while
by the choice of r, and applying item (iii), the second term in (3.20) is bounded by

(3.20)

the functions 12~ (a, LpeApe Y1 I — R, satisfying the conditions of item (iii). These
bounds do not depend on j and so hold on the whole of interval I.

Since

/IRZgl(a, €)(t)dt < 2M,ye,

we have

97(@) = 8" (el = [ IS0 (@ (@) — 0" @)l

<3 / MyeDpe A2 Kope (1)< Ot + / Ry (a, Tye A (t)dt
1 I
< MiyeDpe Azt + 2MyeDpe Ars

nf’

proving item (v).
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Part F: By item (iii) in Part A, we have

0(0) = 0@t = lla = ale + [ L1 2 (@) - (0, 2"@) OOt

to

< 6(€) + 2Me.

This shows that each map ®" : A — wac(.A) is uniformly continuous. Since A, <1
for arbitrary pair 7,£ € DQE, item (v) shows that the sequence {®"(a)} is Cauchy.

Since wac(/l) is complete, the sequence converges to a continuous map d:A—

wac(A).
By construction, the sequence {2 (n, ®"(a)(t)¢)} converges in L'[I] to £ (n, d(a)(t)E).

Hence, a subsequence converges to (), ®(a)(t)€) pointwise almost everywhere.

By item (iv),

d n n
102 @O, PLE@O)0.6) =0 a5 1 o
Since the images P(t, z)(n, £) are compact in the field of complex numbers, and there-
fore closed and since the map (¢, z) — P(t,x)(n, &) is continuous, then we have:

%(n, B(a)(t)€) € P(t, ®(a)(t))(n, &)

showing that
®(a) € SD(a) C wac(A).

O

The next result is a direct consequence of Theorem 3.1 concerning the reachable
sets of QSDI (2.3) at the time ¢ = T defined by:

(3.21) RD(a) = {U(a)(T): ¥(a) € ST (a)} C A.

Corollary 3.2. The multivalued map R : A — 24 admits a continuous selection
where R (a) is given by (3.21).

Proof. We define a continuous map h : wac(A) — A by

Thus, by Theorem (3.1), the map h(®(a)(-)) = ®(a)(T) is continuous for each a € A
and ®(a)(T) € RD(a).

The conclusion of the corollary follows. O
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1. INTRODUCTION

The role of generalized ordinary differential or Kurzweil equations in apply-
ing topological dynamics to the study of ordinary differential equations as well as
their semigroup properties outlined in Artstein [1] is an interesting motivation for
studying this class of equations associated with the weak forms of the Lipschitzian
quantum stochastic differential equations.

In the framework of the Hudson-Parthasarathy [13] formulations of quantum
stochastic calculus, existence,uniqueness and the equivalent forms of Lipschitzian
quantum stochastic differential equations have been established. In the formula-
tions of Ekhaguere [8], the equivalent form is a first order initial value ordinary
differential equation of a nonclassical type having a sesquilinear form - valued
map as the right hand side (see [2,3,4]).

We remark that the equivalent form of QSDEs facilitates the introduction and
study of the associated Kurzweil equations. This is accomplished in the framework
of the Kurzweil integral calculus (called the generalized Perron integral calculus
in the formulations of [18]). The results obtained here are generalizations of anal-
ogous results due to references [1,5,6,7,18] concerning classical initial value prob-
lems to the noncommutative quantum setting involving unbounded linear operators
on a Hilbert space.

Consequently, the technique of topological dynamics can be applied to QS-
DE:s as outlined in [1] by embedding the equivalent forms of these equations in the
space of the associated Kurzweil equations when sufficient analytical properties
of these equations have been developed. This question as well as the applications
of this concept to quantum fields/systems will be addressed elsewhere.

Finally, since the construction of Kurzweil integrals is a simple extension of
the Riemann theory of integration based on Riemann type integral sums,we use
this fact to obtain discrete approximations of weak solutions of QSDEs using the
associated Kurzweil equations.

Our numerical experiments show that the approximation methods developed
in this paper are of a reasonably high level of accuracy than the Euler scheme
and some multistep schemes considered in [4]. Moreover, the methods here are
applicable to a wider class of equations than the considerations in [4] since we work
with pure Caratheodory conditions. The rest of the paper is organised as follows: In
section 2, we outline some of the concepts which feature in the subsquent analysis
including the Kurzweil integral and some of its properties that are of interest in
respect of noncummutative quantum stochastic processes.

The Kurzweil equations associated with quantum stochastic differential
equation and some results on approximation of matrix elements of solution of
the equation are established in section 3. Sections 4 and 5 contain the major results
of this paper. In section 4, we derive a necessary and sufficient condition for a
sesquilinear form-valued map to be Kurzweil integrable. We then show that the

Copyright © Marcel Dekker, Inc. All rights reserved.
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space of Kurzweil integrable sesquilinear form-valued maps contains sesquilinear
form-valued maps that satisfy the Caratheodory conditions. In section 5, we em-
ploy our results in the previous section to prove that the weak form of quantum
stochastic differential equation and its associated Kurzweil equation are equivalent.
We then employ our approximation results of section 3 to generate approximate
values of the weak solution of quantum stochastic differential equation formulated
in Kurzweil form in section 6. We present some numerical examples.

In what follows, asin [2,3,4,8,9,10] we employ the locally convex topological
state space A of noncommutative stochastic processes and we adopt the definitions
and notations of spaces Ad(A), Ad(A)pac, Lf;c(fl), L;‘floc(ﬂ?+), and the integrator
processes Ay, 14;,“, Ag forf, g € L‘}’,?IOC(RJr), T e L}’;’(Ww(ﬂh). ForE, F,G, H
lying in L,zoc [A x I, we consider the quantum stochastic differential equation in
integral form given by

X)) = Xo+ / (E(X(s),8)d Ny (s)+ F(X(s),s)dAs(s)
+ G(X(s), s)dA:(s) + H(X(s),s)ds), tel, (1.1)

where the integral in equation (1.1) is understood in the sense of Hudson and
Parthasarathy [13]. However, Ekhaguere [8] has shown that equation (1.1) is equiv-
alent to the following first order initial value nonclassical ordinary differential
equation

d
E(n, X () = P(X(1),1)(n, §)

X(t) = Xo, 1€, T] (1.2)
As explained in [2,3,4,8—10], the map P appearing in equation (1.2) has the form

P(x, 1), &) = (WE)(x, 1)(n, &) + (y F)(x, 1)(n, §) + (0 G)(x, 1)(1, §)
+ H(x, 1)1, §) (1.3)

n,§ e DRE, (x,t) € A x I where H(x, 1)(n, &) := (n, H(x, 1)E).
The map P may sometimes be written in the form P(x, 1)(n, §) = (n,
Pyg(x, 1)§) where Pyg : A x I — Ais given by

Pop(x,t) = pep(MEQ, 1) + yg() F(x, 1) + 0, (t)G(x, 1) + H(x, 1)
for (x,t) e Ax I.

Equation (1.2) is known to have a unique weakly absolutely continuous
adapted solution @ : I — A for the Lipschitzian coefficients E, F, G, H.

Copyright © Marcel Dekker, Inc. All rights reserved.
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2. KURZWEIL INTEGRALS ASSOCIATED WITH QUANTUM
STOCHASTIC PROCESSES

Letn, § € DQUFE be arbitrary. Assume that U : [ty, T] X [tp, T] — Ais an
A-valued map of two variables 7, ¢ € [ty, T]. We consider the family of complex
valued functions: U(z, t)(n, §) : = (n, U(z, 1)§) for arbitrary n, § € DQIE asso-

ciated with the map U. We shall use the notation ftOT DU(z, t)(n, &) to denote the
Kurzweil integral of U(z, t)(n, &) in the sense and notations of Artstein [1] and
using the formulations of Schwabik [18] and write

k
S(U, D)(n, &) = Y [U(x), 1))(n, &) = U(zj, 1;-1)(n, £)]

j=1
for the Riemann-Kurzweil sum corresponding to the function U(z, t)(n, &) and
partition D : ty <11 <t;) <.... <ty =T of [tp, T].

If f:[t), T] —> A is a stochastic process, then for arbitrary 1, § € DRI,
we set U(z, 1)(n, &) = ({n, f(v)é)t fort,t € [ty, T] and therefore we have

k

=1
k
= ln, f@E; —1;-)]
=

representing the classical Riemann sum for the function f¢(¢) := (5, f(¢)§) and
a given partition D of [y, T']. In this case, we write

T T
/(mf(S)&)dSZ/ D[ fye(7). 1]

fo

provided that the Kurzweil integral ftoT DU(z, t)(n, &) exists in this case. Hence

T T T
/ DU, 1)(n. &) = / Dl fye(t). 1] = / Fre(s)ds. @1

We remark that by Theorem (1.16) (Schwabik [18]) if U : [ty, T] X [tp, T] — €
be such that U is Kurzweil integrable over [#, T'], then for ¢ € [#y, T'], we have

lim |:/ DU(zt,t) — U(c,s)+ Ul(c, c)j| = / DU(t, 1) 2.2)
S—>C fo fo
For several properties enjoyed by Kurzweil integrals and the existence of at least
one d-fine partition D of [y, T] for a given gauge 9, we refer to Chapter 1 and
Lemma (1.4) in Schwabik [18].
We now introduce the Kurzweil equations associated with equation (1.2).

Copyright © Marcel Dekker, Inc. All rights reserved.
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3. KURZWEIL EQUATIONS ASSOCIATED WITH QUANTUM
STOCHASTIC DIFFERENTIAL EQUATIONS

(i) Letthemap P : A x [ty, T] = sesq(ID® IE) be given by equation (1.3).
Then we refer to the equation

d

EW’ X(1)§)=DP(X(1),1)(n, §) (3.1

as the Kurzweil equation associated with equation (1.2).
(i) A map @ : [ty, T] — Ais called a solution of equation (3.1) if

(n, @(s2)§) — (0, P(s1)§) = / DP(®(7), 1)1, §) (3.2)

S1

holds for every s;, 55 € [ty, T] identically.

The integral on the right hand side of equation (3.2) is the Kurzweil integral
introduced in section 2. Equation (3.1) is understood in integral form (3.2) via its
solution.

We have the following results as immediate consequences of our definitions.

Proposition 3.1. Ifamap ® : [ty, T] — Ais a solution of the Kurzweil equation
(3.1) on [ty, T, then for every u € [ty, T], we have

(n, ©(s)§) = (n, Pw)§) +/ DP(®(7), 1)1, &), s € [10, T] (3.3

Conversely ifamap ® : [ty, T] — A satisfies the integral equation (3.3) for some
u € lty, Tlandall s € [ty, T] then ® is a solution of equation (3.1).

Proof: The first statement follows directly from the definition of a solution of
(3.1) when we put s; = u and s, = 5. Conversely, if @ : [ty, T] — A satisfies
the integral equation (3.3) then by the additivity of the integral, equation (3.2)
follows.

Proposition 3.2. If ®: [t), T] — A is a solution of equation (3.1) on [ty, T']
then

lim[(n, ®(5)§) — P(®(0), 5)(n, §) + P(P(0), 0)(n, §)]
= (n, ®(0)§) (3.4)

Proof: Leto € [t, T] be fixed. Then by Proposition (3.1) we have

(n, ©(s)§) —/ DP(®(z), 1), &) = (n, P(0)§)

o

MaRcEL DEKKER, INC.
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therefore

(0, P(s)§) — P(P(0),5)(1,§) + P(P(0),0)(1n,) — / DP(®(7),1)(n.8)

+ P(P(0), 5)(n, §) — P(P(0), 0)(n, §) — (n, P(0)§) =0 (3.5)
for every s € [ty, T].

By equation (2.2)
}i_{?, [/? DP(®(1), 1)(n, &) — P(®(0), s)(n, &) + P(P(0), 0)(n, 5)} =0
! (3.6)
Equation (3.6) and (3.5) yield the existence of the limit given by
lim[(n, ®(5)§) — P(P(0), $)(n, §) + P(P(0), 0)(n, §) — (1, P(0)§)]
as well as the relation

lim[{n, ®(5)§) — P(®(0), 5)(n, §) + P(P(0), 0)(n, §)
—(n, ®(0)§)] =0
which gives (3.4).
Remark 3.3. By virtue of Proposition (3.2), the following approximation holds:-

If & : [ty, T] — A is a solution of equation (3.1), then for every o € [y, T] and
for arbitrary n, £ € DQIF, the matrix element

(n, ®(s)§) = (n, P(0)§) + P(P(0),5)(n,§) — P(P(0),0)(n, §),
provided that s in [#y, T] is sufficiently close to o.

We now introduce a class of sesquilinear form - valued maps P : A x [ty, T]
— sesq(ID®IE), which are Kurzweil integrable.

4. A CLASS OF KURZWEIL INTEGRABLE SESQUILINEAR

FORM - VALUED MAPS

In what follows, we adopt some notations and terminologies employed in
[18, Chapter 1]. For each n,& € DQFE, let h,e : [to, T] — R be a family of

Copyright © Marcel Dekker, Inc. All rights reserved.
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nondecreasing functions defined on [#y, 7] and W : [0, c0) — IR be a continuous
and increasing function such that W(0) = 0. Then we say that the map P : A x
[tg, T] —> sesq(IDQIE) belongs to the class F(A x [0, T1, hye, W) for each
n, & € DRE ifforallx,y € A, 11,1, € [ty, T]

@ |P(x, 2)(n, &) — P(x, 11)(1), §)| < |hye(12) — hye(11)] “4.1)
(i) [P(x, 1)1, &) — P(x, 1)1, &) — P(y, )1, &) + P(y, 11)(n. &)
= Wlx = yllpe)lhyg (12) — hye (1) (4.2)

We now present a number of results which are simple extensions of similar results
in Schwabik [18] to the present noncommutative quantum setting. The next Theo-
rem is an extension of the convergence results of Corollary 1.31 in [18]. The proof
follows exact arguments as in [18].

Theorem 4.1. Assume that the following conditions hold :

(1) themapsU, U, : [ty, T] X [ty, T] — flaresuchthat(t, t) > Uy(t,t)
(n, &) are real valued and Kurzweil integrable over [ty, T for each
n,é§e DE,VYm=1,2,...

(i) there is a gauge w on [to, T] such that for every € > 0, there exists a
map p : [ty, T] = IN and a family of positive superadditive interval
functions ®,¢ on [ty, T defined for closed intervals J C [ty, T with
@, ([to, T1) < € such that for every t € [ty, T]

|Un(t, J)(0, &) = U(T, )1, §)| < Ppe(J)

provided that m > p(t), and (t, J) is an w-fine tagged interval with
teJ Cln Tl
(iii) there exist real valued Kurzweil integrable functions

V,];’:, ani [to, T] X [to, T] > R
and a gauge 0 on [ty, T such that for allm € IN, t € [ty, T],
Ve (T, J) S Un(t, J)(7, §) < Wye(T, J).

for any 0-fine interval (t, J), ¥ n,& € DQIE. Then the map
(r,t) = U(z, 1))(n, &) is Kurzweil integrable over [ty, T and that

T

T
lim DU, (z, 1)(T, 1)(n, §) =/ DU(z, 1)(n, §).

m—00 to fo

The next Theorem concerns some fundamental properties of Kurzweil inte-
grals in the framework of [18].

MaRcEL DEKKER, INC.
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Theorem 4.2.

1) Let U :[ty, T] X [ty, T] — A be such that (r,t) > U(r,t)(n, &) is
Kurzweil integrable over [ty, c] for ¢ € [ty, T] and that the limit

c
‘111}1 [/ DU(z,1)(n, §) — U(T, c)(n, §) + U(T, T)(n, S)} =1
c—>T— A
4.3)
exists foralln, & € DQIE. Then fZUT DU(z,t)(n, &) exists and equals 1.
(i) LetU :[ty, T1x [to, T] —> A be such that (z,t) — U(z, t)(n, &)
is Kurzweil integrable over [c, T for every ¢ € (ty, T and that the limit

c—>to+

T
lim [/ DU(T,I)(U,"E)-FU(IO,C)(U,é)—U(to,to)(n,S)}=1
(4.4)

exists foralln, & € DQIE. Then fng DU(z,t)(n, &) exists and equals 1.
(ii) Let U : [ty, T1 % [to, T] —> A be such that (t,t) — U(z, t)(n, €) is
Kurzweil integrable over [ty, T)]. Then for ¢ € [ty, T]

lim [ / DUz, 1)(n, ) — Ule, s)(n. &) + Ulc, )i, s>}

_ f DU(x. (1, &) @.5)

fo

foralln, & € DQE.

Proof: The proofs are simple adaptation of arguements employed in Theorem 1.14,
Remark 1.15 and Theorem 1.16 in [18] to the present noncommutative quantum
setting.

Next, we present some results concerning the existence of the integral in-
volved in the definition of the solution of the Kurzweil equation (3.1).

Theorem 4.3. Assume that the map (x,1) = P(x,t)(n, ) belongs to IF (A x
[to, T1, hye, W), and X : [a, b] — A, la, b] C [ty, T] is the limit of a sequence
{Xi kew of processes Xy - [a, b] — A such that fab DP(Xi(7), t)(n, §) exists for
every k € IN. Then the integral fab DP(X(7),t)(n, &) exists and

b b
/DP(X(T),t)(n,$)=k1Lrgo/ DP(Xi(t), 1)(n, &)
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Proof: Since the complex field € = R?, we assume without any lost of generality
that the map P(X(7), t)(n, &) is real valued. Let € > 0 be given, then by (4.2), we
have
[P(X(7), )0, §) — P(Xp(v), 11)(n, §) — P(X(1), )(n, §)
+ PX(D), 1), )] < WIXK(T) = XDy () = hye ()] (46)

forevery t € [a, b],t) < T < 1, and [1, 1] C [a, b].
If we set

Upe(t) =

€
e @) — (@) + 170

for t € [a, b] then the function U, : [a, b] —> R is nondecreasing and
(Upe(b) — Upe(a)) < €.

Since limyg_, o Xi(t) = X(r) in A for every T € [a, b] and the function W is
continuous at 0, then there is a p = p(t) € IN such that for k > p(7),

€
Wl Xi() = X(Dllpe) =< e — hg(@) 1

i.e. for k > p(7), the inequality (4.2) can be written as

|P(Xi (1), )0, &) — P(X(7), 1)(n, &) — P(X(7), 1)(n, &)
+ P(X(7), 1), §) < Upe(tr) — Upe(t1)

By inequality (4.1)
|P(Xk(7), 2)(n, §) — P(Xi(0), 11)(1, §)| = [hye(t2) — hye (1)

foreveryt € [a,bl,k € IN,t; <t <t and [#, 1,] C [a, b].
Hence the last inequality implies that

—hpe(t2) + hye(t) < P(Xi(2), ), &) — P(Xy(7), 11)(n, &)
< hye(tr) — hye(ty)

but the integrals

b
/ D(hy (1)) = hpe(b) — hy(a)

and
b
/ D(—hye(t)) = hye(@) — hye ()

exist. We conclude that the integral fah DP(X (1), t)(n, &) exists and the conclusion
of the theorem holds by Theorem (4.1) above .
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Theorem 4.4. Assume that the map (x,t) — P(x, 1)(n, &) belongs to IF(A x
[to, T1, hpe, W) and that X : [a, b] —> Ais the limit of a sequence of simple pro-
cesses. Then the integral fab DP(X(7), t)(n, &) exists for arbitrary n, § € DQIE.

Proof: By Theorem (4.3), itis sufficient to prove that the integral fab DP(¢p(7), 1)
(1, &) exists for every simple processes ¢ : [a, b] — A. If ¢ is a simple process
then thereis a partitiona = sg < §; < 55 < --- < 5 = bof[a, b]suchthat¢(s) =
cj € Afors € (sj_1,s;),j =1,2,...,kwherec;, j = 1, ..., karefinite number
of elements of A.

By the definition of the Kurzweil integral, if s;_; < 01 < 02 < 0}, then we
have the existence of the integral

/1 DP(¢(z).1)(n. &) = P(cj, 02)(n.§) — P(cj, o)1, §)

Assume that oy € (s;_1, 5;) is given, we have

lim [/ DP(¢(z), )(n, §) + P(@(sj-1), $)(n, )

x—>x/-,1+

- P(qb(sjl),sjl)(n,s)} = lim [P(c;.o0)(n. )

— P(cj, )1, 8) + P(@(s;-1), 5)(, &) — P(@(sj_1), 5;-1)(n, )]
= P(cj,00)(n, &) — P(cj, sj—1:)(n, &) + P(P(s;-1), s;-14)(n, &)
— P(@(sj-1),sj—1)(1, &) 4.7

Hence by Theorem (4.2) (ii), the integral f ‘/’i] DP(¢(7), t)(n, &) exists and
equals the computed limit given by (4.7). Similarly, it can be shown that the integral
f I DP(¢(1), t)(n, &) exists and the following equality holds.

oo

/‘/ DP(d)(T)’ t)(n’s) = P(ijsj_)(nvé) - P(ijao)(n,é)

0

— P(@(s)), s;—)n, ) + P(P(s;), s;)(n, §) (4.8)

by Theorem (4.2)(i).
Hence by additivity of the integral, we obtain

/ ' DP@E). 0 £)

i1

_ f DP(@(), )1, &) + / " DP@(). 0, £)

Sj-1 a0
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which equals the sum of expressions in (4.7) and (4.8) over the subinterval [s;_1, 5;]
of the partition.

Repeating this argument for every interval [s;_1, s;], j = 1,2, ..., kand us-
ing the additivity of the integral, we obtain the existence of the integral
[P DP(¢(x), H)(, £) and the identity

b
/ DP(p(v), 1)(n, §)

k k
=Y [P(cj, s;=)0. &) = P(cj,sj1)0] + Y _[P(@(s;-14), 5,101, §)
-

J j=1
— P(P(sj-1), s;-1)(n, §) — P(@(s;), s;-)1n, &) + P(&(s;, s;)(n, §)]
4.9)

Theorem 4.5. Assume that the map (x,1) = Px,0)1,&) is of class IF(A x
[t0, T], hpe W)and X : [a, b] — A, [a, b] C [t, T1is of bounded variation, then
the integral fab DP(X(7),t)(n, &), exists.

Proof: Theresultfollows from Theorem (4.4) because every process X : [a, b] —

Ain leoc(fl) of bounded variation is the uniform limit of finite simple processes

(cf[9,10,13]).

Next, we denote by C (fl X [ty, T], W), the class of sesquilinear form-valued
maps which are Lipschitzian and satisfy the Caratheodory conditions. We then give
a result that connects this class with the class F(A x [to, T1, hye, W).

Definition 4.6. A map P : A x [ty, T] — Sesq(IDQE) belongs to the class
C(A x [ty, T1, W) if for arbitrary n, § € DQE,

(i) P(x,-)(n, &) is measurable for each x € A.
(ii) There exists a family of measurable functions M, : [to, T] — R such

that ftUT M,g(s)ds < oo and

|P(x, $)(0, 6)| < Mye(s),  (x,5) € Ax 19, T] (4.10)

(iii) There exists measurable functions K ,fé : [to, T] — R, such that for
eacht € [ty, T, ft:) K,(s)ds < oo, and

|P(x, )1, ) = P(y, )0, §) < KW (Ilx = yllye) (411

for (x, s), (v,s) € A x [ty, T1 and where in (i) - (iii) we take W(¢) = ¢.
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Definition 4.7. For (x, 1) € A x [tp, T] and P belonging to C(A x [ty, T], W),
we define for arbitrary n,§ € DQE,

F(x, 1), §) =/ P(x,5)(n, §)ds (4.12)

fo

We have the following results that connect the two classes of maps.

Theorem 4.8. Assume that for arbitrary n, § € DQE, the map
P:A XN[tO’ T] — sesq(IDQE) is of class C(A x [ty, T1, W). Then for every
x, yeA t1,t €lty, T), F(x,t)(n, &) defined by (4.12) satisfies

() |F(x, ), 8) — F(x, 1), )| < [ Mye(s)ds

(i) |F(x,)(n, &) — F(x,11)(n, &) = F(y, ), €) + F(y, 11)(n, &)
< Wllx = yllye) [, KJo(s)ds

(iii) The map F(x,t)(n, &) belong to the class F(A x [ty, T], hye, W)

foreachn, & € DQIE , where

t t
hye(t) = f Mg (s)ds + / K. (s)ds
I 10

Proof: (i) Since (4.10) holds we have by (4.12) and for all x € A 1,0 e
[t%, T].

|F(x, )1, &) — F(x, 1)1, §)| = / P(x,5)(n, §)ds

< / |P(x. ). £)lds

< /2M,7,g(s)ds
(ii) Again by (4.12) and (4.11)
[F(x, ), &) — F(x, 1), §) — F(y, ), §) + F(y, 1)1, §)

/ [P(x. $)(n. €) — P(y. 5)(1, E)1ds

n

< / |P(x, ). &) — P(y. ). §)lds < W(llx — yllye) f K?(s)ds

forevery x, y € Aand 1,1, € [to, T].
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By (i) above
15}
[F(x, )N, &) — F(x, 1), §) < / Myg(s)ds < |hye(t2) — hye(t1)]
4]

Vx € A, t1, 1, € [to, T] satisfying inequality (4.1).
Again by (ii) above
|F(x, 1)1, &) = F(x, 1), §) = F(y, )1, §) + F(y, 11)(n, §)|

5]

< W(lx - y||ns) K%(S)ds
n

= Wlx = yllpe)lhye (12) — hye (11)]

forevery x, y € A, 11, 1, € [ty, T] satisfying inequality (4.2) .

In the next section, we prove that the Kurzweil integral of F(x, ¢)(n, £) equals
the Lebesque integral of P(x, ¢)(n, §). This facilitates the proof of the equivalence
of equation (1.2) and the associated Kurzweil equation.

5. EQUIVALENCE OF QUANTUM STOCHASTIC
DIFFERENTIAL EQUATION AND THE ASSOCIATED
KURZWEIL EQUATION

In connection with subsequent results, we assume that the map P : A x
[to, T] = Sesq(ID®I) given by equation (1.3) is of class C(A x [y, T], W) and
that F(x, t)(n, £) is given by (4.12).

Theorem 5.1. [fx : [a, b] — A, la, b] C [t, T]is the limit of simple processes
then

b b
| pra@.nns = [ Paw.so. e
Proof: By Theorem (4.8)(iii) the map (x, 1) — F(x, t)(1, £) belongs to IF (A x

[to, T1, hye, W). Therefore the existence of the integral fab DF(x(7),t)(n, &) is
guaranteed by Theorem (4.4). Also by Theorem (4.4), for every simple process ¢ :

[a, b] — A the integral [ P(¢(s), s)(n, §)ds exists and equals [ DF(¢(t), 1)
,%).

Assume now that ¢y : [a, b] — A kelNisa sequence of simple processes such
that

klim or(s) = x(s), s € la,b]
Then by (4.11),
klglgo P(r(s), s)(n, &) = P(x(s), s)(n, §)
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and inequality (4.10) enables us to use the Lebesgue dominated convergence the-
orem for showing that fab P(x(s), s)(n, &)ds exists and by Theorem (4.3)

b b
/DF(X(T)’I)(U’é):kIEEO/ DF(¢i(t), 1)(n, &)

b b
=k11)11010/ P(¢k(S),S)(77,E)dS=/ P(x(s), )0, &)ds

a

Remark 5.2.

(i) The results given above will be used for the representation of equation
(1.2) within the framework of the Kurzweil integral calculus. This is
accomplished based on the construction of the map F(x, t)(n, &) for a
given sesquilinear form - valued map P : A x [ty, T1 — Sesq(DQIE)
of class C(A x [0, T1, W) and for arbitrary n,§ € DQE.

(i) Let the quantum stochastic differential equation (1.2) be given. The
Caratheodory concept of a solution of (1.2) is equivalent to the re-
quirement that for every s;, s, € [tp, T] we have a weakly absolutely
continuous map X : [ty, T] — A satisfying

(n, x(52)§) — (n, x(s1)§) = / P(x(s), s)(n, §)ds (5.1

(ili) The solution X of equation (1.2) lies in L? (A) and is therefore the

loc

limit of simple processes in Ad(A)ac, see [2,8,13]. Consequently the
hypothesis of the last theorem remain true.

We now present our major result in this section.

Theorem 5.3. A stochastic process X : [ty, T1 — A is a solution of equation
(1.2) if and only if X is a solution of the Kurzweil equation

d
- (0. X(0)§) = DF(X(x). )(n. &) (5.2)

onlty, T, t € [to, T1, and for arbitrary n,§ € DQIE.

Proof: Assume that X : [79, T] — A is a solution of (1.2). By Theorem (4.8),
the integral f;z DF(X(7), t)(n, &) exists and

(n, X(52)§) — (n, X(51)§) = f CP(X(5), )1, )ds

_ / " DFE(X(@), 1)1, §)

5]

for all s, s, € [19, t]. Hence X is a solution of (5.2).
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If conversely X is a solution of (5.2), then again Theorem (4.8) shows that

X satisfies equation (5.1). Since F (X, t)(n, &) belongs to F(A x [1, T1, hye, W),
we have

[(n, X(52)8) — (n, X(s1)§)| =

/ DF(X(), ). s>‘

< |hype(s2) — hpe(s1)l.

Hence the map ¢+ — (n, X(#)§) is absolutely continuous on [fy, T'] since h,¢()
is absolutely continuous for each n, & € D®I. Hence X is weakly absolutely
continuous.

Remark 5.4. Owning to several properties of the sesquilinear form -valued map
P given by equation (1.3) as outlined in Ekhaguere [8], it is enough for P to be Lip-
schitzian and for inequality (4.10) to be satisfied for all (X, 1) € A x [to, T] for P
to be of class C(A x [t,, T], W) where W(z) = t. Consequently, F (X, t)(n, &) de-
fined by equation (4.12) is of class F(A x [ty, T1, hye, W)and soby Theorem (5.1)

/DF(X(T)J)(H,S)Z/ P(X(s),s)(n, &)ds, 1t €1, T]. (5.3)

Io 0]

Again, Theorem (5.3) asserts that X satisfies equation (5.2) if and only if

(n, X(0)&) — (n, X(10)§) =/ DF(X(v), 1)(n,§)

- f P(X(s). 5)(1, £)ds

by equation (5.3). This follows if and only if

d
E(,;, X()E) = P(X(1),)(n, &)

(n. X(10)§) = (n, Xo§)

Hence equations (5.2) and (1.2) are equivalent.

As a consequence of the above results, we now describe a procedure for ob-
taining approximate solutions of equation (1.2) as follows. We assume hypothesis
of Theorems (4.8), (5.1) and (5.2).

The initial value problem (1.2) is equivalent to the integral equation

(n, X($)§) = (n, X(10)§) +/ P(X(u), u)(n, §)du 5.4
fo

with the Lebesgue integral on the right hand side. If X is a solution of (1.2) on

[to, T], then by the existence and uniqueness results, X is adapted and weakly

absolutely continuous and lie in L?,_(A). Consequently the matrix elements of the
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solution can be approximated by matrix elements (n, X;(¢)£) of a simple process
X;(t) € Ad(A),,4c Which is constant on intervals of the form (¢ j—1,tj) where 1y <
t; < --- <ty =t and which on (t;_1, t;) assumes the value (n, X(7;)§) where
tio1 <t; <t;, j=1,2....,k such that

Jim (n, Xi(5)8) = (n, X(5)§) (5.5

i.e lim;_, o X;(s) = X(s) uniformly on [7y, T].
Since

P(X,t)(n, &) is of class C(A x [ty, T1, hye, W)
then

Jlim P(Xi(s), $)(n, &) = P(X(s5), 5)(1, §)

on [ty, T'] by inequality (4.11).
Assuming that the sequence

P(X;(s),s)(n, &), 1=1,2,...

satisfies (4.10) then by the Lebesgue dominated convergence theorem it can be
concluded that

t t
11_1)123/ P(Xz(S),S)(n»é)dS=/. P(X(s), s)(n, §)ds. (5.6)

to

However, for a fixed [ € IN, we have

t ki tj
[ poae.smsas =3 [ pep. s eds
1o j=11j-1

ki
. [F(X(z)), t;)(n,§) — F(X(t)), t;—1)(n, §)],

Jj=1

which shows that the integral fré P(X(s), s)(n, £)ds appearing in (5.6) can be
approximated by the Kurzweil integral sums of the form

ki
Z[F(X(Tj), 1)), §) — F(X(t)), tj-1)(n, §)].

j=1

Finally, using (5.4) the matrix element (1, X (¢)&) of the solution X can be approx-
imated by the sum

ki
(n, X(0)§) = (n, Xo§) + Z[F(X(Tj), 1)1, §)
=
— F(X(zj), tj-1)(n, §)] (5.7)
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provided that a sufficiently fine division#y < t; < #, < --- < # = t is constructed
and the choice of 7; € [tj_1,¢;], j =1,2,..., k is fixed in order to obtain the
uniform convergence (5.5).

6. NUMERICAL EXAMPLES

In the notation of section 1, we consider the simple Fock space I"(Lf,(ﬂh))
where y =R =0, f =g =1, and its L%(Q, F, W) realization where (2, F,
W) is a Wiener space. Each random variable X is identified with the operator of
multiplication by X so that Q(¢) = A(z) + A1 () = w(z) is the evaluation of the
Brownian path w at time 7. In this case, it has been shown that quantum stochastic
integrals of adapted Brownian functional F such that f[f] E[F(s,-)*lds < oo exists
(see [2,4]). Here E is the expected value function.

For exponential vectors n = e(«) and & = e(8) where «, § are purely
imaginary- valued functions in LZG(R+), the equivalent form (1.2) of the quantum
analogue of the classical Ito stochastic differential equation

dX(t, w) = —%X(t, w)dt —+/1 — X2(t, w)dW(t)
X(t) = Xo, t€[0,T] 6.1)

is given by
d
7 EX (@ wizw)) = E(=p0)v1 - X2(t, w)z(w))
+ E(—a()/1 — X2, w)z(w)) + E(— %X(t, w)z(w)>

X(tp) = Xo, t€[ty, T] 6.2)

where

o0 l o0
z(w)zexp{ fo (—a(s) + Bl&)dw(s) = 5 /0 (az(S)Jrﬁz(S))dS}
(6.3)

(see [2,4] for details ).

With Xo(w) = 1, a(t) = B(¢t) = i, and the interval [0, T'] = [0, 1], then we
have by equation (6.3), z(w) = e and E(Xo(w)z(w)) = E(z(w)) = e.
The exact solution of equation (6.2) is then given by

E(X(f)z(w)) = ' 2! (6.4)

We now apply our approximation procedures to discretize equation (6.2)
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Fort € [0, 1], X € A the map Pyg defined in section 1 is

1 1
Pop(t, X) = —B(t)y'1 — X2(t) — a(r)y/1 — X2(t) — EX(t) = —EX(t)

and
P(X, 01, §) = <77, (—%X(t))$>
for arbitrary n, & € D®IE. By equation (4.12)
F(X(7),)(1n, §) = (<n (—%X(T)>E>)t = —%tE(X(f)Z(w))

Equation (6.2) is equivalent to (5.2) by Theorem (5.3). Thus we use Proposition
(3.2) which leads to the approximation

(n, X(5)§) = (n, X(0)§) + F(X(0),5)(n,§) — F(X(0),0)(n,§)
(6.5)

for every o € [0, 1] provided that s € [0, 1] is sufficiently close to o. Thus from
equation (6.5),

1 1
E(X(s)z(w)) = E(X(0)z(w)) — st(X(G)z(w)) + EGE(X(G)z(w))
1
= <1 — E(S — o)) E(X(o)z(w)) (6.6)
Again by equation (5.7), we have
ki t
0 XW8) = (. Xe8) + ) [ PO . s
j=171j-1
ie
1
E(X()z(w)) = E(Xoz(w)) — > Z E(X(tj)z(w)(t; —tj-1) (6.7)
j=1
wheret, <t) <t <--- <, =tand t; € [t;_y, t;].

If we fix T; =t;_; for each j = 1, 2.. and a constant steplength &, then we
have from equation (6.7)

1
E(X(tj)z(w)) = <1 - Eh)E(X(tj—l)Z(w))a j=12.N (6.8)
Again, fixing t; = %(tj +tj_1), j = 1,2.. then equation (6.7) gives

1
EX(tj)z(w)) = E(X(tj-1)z(w)) — EhE(X(Tj)Z(w)) (6.9)
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Table 1. Numerical Values with 7; =¢;_; and a(t) = B(t) =i

Approximate Values  Exact Values Absolute Errors
N h E(X(ty)z(w)) el-ain |E(X(ty)z(w)) — ¢!~
g 273 1.622051700 1.648721300 0.02666960000
16 274 1.6356182000 1.6487212710 0.01310307000

where the intermediate values E(X(t;)z(w)) are calculated by setting o =1;_;
and s = 7; in (6.6) to give

1
E(X(7j)(z(w)) = [1 5 tj—l)]E(X(tj—l)Z(w)) (6.10)

By putting & =273, h = 27 and fixing 7, as above ,we generate the following
tables of values for the case @« = 8 = i. Equations (6.8),(6.9),(6.10) are used to
generate the following values at the final time 7 = 1 in Tables 1 and 2 below.

In order to compare the accuracy of the method of this paper ,we now apply
the method to generate approximate values for the equivalent form of Ito equation

dX(t) = %X(t)dt + X(@®)dW(t)

X(t) =1, te€][0,1] 6.11)
given by

dEXt —SEXt 6.12

E(()Z(w))_ﬁ (X, w)) (6.12)

where z(w) =e,t € [0, 1], for a(t) = B(¢t) =i with exact solution E(X)t,
w)z(w) = e!+3!

Equation (6.12) had been discretized in [4] using the Euler and a 2-step
scheme. We compare the results with those of the present scheme.

Table 2. Numerical Values with 7; = %(lj +ti_Danda(t) = @) =i

Absolute Error
Exact value |E(X(ty)z(w))

N h o EX(y)zw) E(X(ty)z(w)) = el —e!m 2N |

8 27 09375 1.700716800  1.649283900 1.648721300  0.000562600
16 27%  0.96875 1.67460900 1.648858600 1.648721271  0.000137329
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Table 3. Numerical values with 7; = ¢, and a(t) = B(t) = i

Approximate Values Exact values Absolute Errors
N h E(X(ty)z(w)) eI E(X(ty)z(w)) — el
g 273 10.74888529 12.18249396 1.433608668
16 274 11.402065680 12.18249396 0.78042828

For equation (6.11),we have the followings. From equation (6.12) and using (4.12),

3
F(X(0), 1) = StEX(T)z(w))

and from (6.5)

E(X(s)z(w)) = (1 + ;(S - 6)>E(X(0)Z(W))- (6.13)
From (5.7),

E(X(t)z(w)) = E(Xoz(w)) + % ijIIE(X(Tj)Z(w))(tj —j-1). (6.14)
Fixing 7; =1;_, for each j =1,2--- and h = (t; — t;_,), then we have from
(6.14)

E(X(tj)z(w)) = <1 + %h)E(X(tj—l)Z(w)) (6.15)

Again fixing 7; = %(tj + tj_1), we have from (6.14)
3
E(X(1j)z(w) = E(X(tj-1)z(w)) + EhE(X(Tj)Z(w))v (6.16)
with intermediate values
3
E(X(rj)z(w)) = [1 + E(Tj - tj_l)i|E(X(tj_1)z(w)). (6.17)

Our numerical experiments yield the following results at the final time t = 1. We
use equation (6.15) for Table 3.
Equations (6.16) and (6.17) are used to generate Table 4.

6.1 Conclusion

(1) Itis discovered that the schemes (6.8) and (6.15) when t; is fixed at the
starting point of each subinterval of the partition points generate exactly
the same values as Euler scheme considered in [4]. This is confirmed
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Table 4. Numerical values with 7; = %(tj +ti—Danda(t) = B(t) =i

Absolute Error
Exact value |E(X(ty)z(w))
N h ooy EX@iw) EX@zw) = iv o —elthw]

8 2% 0.9375 10.97032998  12.08924593  12.18249396  0.093248032
16 27* 096875 11.58995788  12.15756309 12.18249396  0.024930868

by Tables 1 and 3 . The Tables also show that the approximate schemes
produce better results with finer gridpoints.

(i) However, Tables 2 and 4 show a more superior convergence rate when t;
is fixed at the midpoint of each subintervals of partition. In Table 2, with
constant steplengths 2~ =272 and h = 2~* ,we have convergence to at
least three decimal places at each of the gridpoint with cummulative ab-
solute errors at the end point # = 1 being 0.000562600 and 0.000137329
respectively. This experiment shows that the approximate scheme (5.7)
has a superior convergence rate when t; is taken as midpoints of each
subinterval and expression (6.5) is used to compute intermediate values.
This level of accuracy is comparable to that of a 2- stage Runge-Kutta
scheme reported in [2] applied to problem (6.12).

In comparison with the Euler and the 2-step method applied in [4] to problem
(6.11), Table 4 shows that the method of this paper is more accurate than those
two schemes when t; is taken as the midpoint of each of the partition subinterval.
In particular, for a steplength of 4 = 273, the global accumulated error at the
final time t = 1 is 0.093248032 compared with the global errors of 0.39983038
and 0.11070989 with h =273 and 2 respectively for the 2-step scheme (see
[4]). We remark that equation (5.7) permits a change of steplenghts at any point
during computation and that this method is suitable for equation (1.2) where the
map (¢, x) — P(t, x)(n, §) is not necessarily continuous jointly in # and x and the
matrix elements are not necessarily differentiable more than one time.

In particular, the methods developed in this paper provide a simple approach
for computations of expectations of functionals of Ito processes when the quantum
equations are considered only in the simple Fock spaces. Applications of the
methods to problems in quantum fields/systems will be considered elsewhere.
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Abstract. In this paper we established the existence of solutions of Lower semicontinuous quantum
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operator was established. This selection which is an adapted stochastic process is a solution of the
Lower semicontinuous quantum stochastic differential inclusions.
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1. Introduction

The theory of quantum stochastic differential inclusions is a multivalued analogue of quan-
tum stochastic calculus of Hudson and Parthasarathy formulation [9]. The theory of differen-
tial inclusions has vast applications and one of its motivations is the application in the study of
control theory. In [5] the existence of solutions of quantum stochastic differential inclusions
with Lipschitzian coefficients lying in certain locally convex spaces was established. A further
study of this quantum stochastic differential inclusions was done in [6] with hypermaximal
monotone type and in [7] for evolution type. The topological properties of solution sets and
existence of continuous selections of the solution sets for the Lipschitzian quantum stochastic
differential inclusions were established in [2] and [3].

For a classical differential inclusion the existence of solutions of discontinuous cases, up-
per and lower semicontinuous differential inclusions were established in [1] and [4]. These
weaker forms of regularity of the coefficients are also applicable in the study of optimal quan-
tum stochastic control theory [10]. The aim of this work is to establish the existence of
solution of Lower semicontinuous quantum stochastic differential inclusions. We first define
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an integral operator which is a mapping consisting of adapted stochastic processes and es-
tablished the existence of a continuous map which is a selection of the mapping. Hence we
established the existence of at least a solution of the Lower semicontinuous quantum stochas-
tic differential inclusions. This is a generalization of the result in [1] to our non commutative
setting. This will lead in a later work to further applications of quantum stochastic calculus
to quantum stochastic differential equations with discontinuous coefficients, solutions of per-
tinent quantum stochastic control problems and quantum optics. In sequel the work shall be
arranged as follows: section 2 shall be for preliminaries on notations and definitions while
section 3 shall be for our main results.

2. Preliminaries

In this section we state the definitions and notations which shall be employed in the sequel.

2.1. Notations

In what follows, if U is a topological space, we denote by clos(U), the collection of all
non-empty closed subsets of U.
To each pair (D, H) consisting of a pre-Hilbert space D and its completion H, we associate the
set Lvt (D,H) of all linear maps x from D into H, with the property that the domain of the
operator adjoint contains D. The members of L7 (D,H) are densely-defined linear operators
on H which do not necessarily leave D invariant and L; (D, H) is a linear space when equipped
with the usual notions of addition and scalar multiplication.
To H corresponds a Hilbert space I'(H) called the boson Fock space determined by H. A
natural dense subset of I'(H) consists of linear space generated by the set of exponential
vectors(Guichardet, [8]) in I'(H) of the form

(=P :XRf, feH,

n=0

where ®° f =1 and ®" f is the n-fold tensor product of f with itself for n > 1.

In what follows, D is some pre-Hilbert space whose completion is & and y is a fixed Hilbert
space.

L)Z,(R+)(resp. L)z,([O, t)), resp. L?([t,oo)) t € R, ) is the space of square integrable y-valued
maps on R, (resp .[0,t), resp. [t,00)).

The inner product of the Hilbert space Z ® F(Lﬁ(RJr)) will be denoted by (.,.) and || . || the
norm induced by (.,.) .

Let E,E, and Ef, t > O be linear spaces generated by the exponential vectors in Fock spaces
F(L?(RJF)), F(Lﬁ([O, t))) and F(L?([t, 00))) respectively ;

o = L (DYE, Z ® [(L7(R,)))
o, =L} (DRE,, Z ® F(Lﬁ([o, )T
=T, LT (E, r(Lﬁ([t,oo)))), t>0
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where ® denotes algebraic tensor product and I,(resp.I') denotes the identity map on #Z ®
F(L?([O, t))))(resp .F(L?([t, 00)))), t > 0 For every 1, & € D®E define

|| X ”n§':| (TI;X@ |1 X € .o

then the family of seminorms
{ll- llpz: m, € € DOE}

generates a topology 7,, , weak topology .

The completion of the locally convex spaces (.«/, 1,,) , (., T,,) and (", T,,) are respectively
denoted by ./, .¢¢/; and .&/".

We define the Hausdorff topology on clos(.«/) as follows:

For x € .« , M, N € clos(/) and 1, & € DRE, define

Pne( M, N) =max(8,e (M, N),6pe(N, M),

where

Ope( M, N) = sup de(x, A),

and
dyele, A) = inf [l =y llye

The Hausdorff topology which shall be employed in what follows, denoted by, 7 , is gener-
ated by the family of pseudometrics {p,:(.) : ,& € D®E}. Moreover, if /£ € clos(.¢/), then
| A ||,z is defined by

| 11y = e (A, {OD;

for arbitrary 1, £ € DQE.
For A, B € clos(C) and x € C , a complex number, define

d(x,B)=inf |x —y |,
YEB
6(A,B) =supd(x, B),
X€A
and
p(A B) =max(6(A,B), 6(B,A)).
Then p is a metric on clos(C) and induces a metric topology on the space. We also define:
dye((t,x), (tg, x0)) = max{| t — to |, | x — xq [le}-

Let I € R,. A stochastic process indexed by I is an .o/ -valued measurable map on I.
A stochastic process X is called adapted if X(t) € ./, foreach t € 1.
We write Ad(.«/) for the set of all adapted stochastic processes indexed by I.
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Definition 1. A member X of Ad( Jz?j is called

(1) weakly absolutely continuous if the map t — (n,X(t)&), t € I is absolutely continuous for
arbitrary 1, & € DQE,

(ii) locally absolutely p-integrable if || X(.) ||fl g IS Lebesgue -measurable and integrable on
[0,t) S I for each t € I and arbitrary 1,§ € DQE.
We denote by Ad(.#), 4 (resp.Lfoc(ﬂ?j) the SE of all weakly, absolutely continuous(resp.
locally absolutely p-integrable) members of Ad(.«/).
Stochastic integrators: Let L‘Y"jloc(l&) [resp.Ll‘;‘(’ﬂ’loc(RjL)] be the linear space of all measur-
able , locally bounded functions from R, to y [resp. to B(y) , the Banach space of bounded

endomorphi.sms of y]. If f € L;f’loc(RJr) and 7 € L;‘Ey)’loc(IR{Jr) , then 7f is the member of
L, (B,) given by (nf)(t) = n(0)f (1) , t € R,
For f € L)z,(]R) L and w € LB‘(’ Y)ZOC(]R+); the annihilation , creation and gauge operators,

a(f),a*(f) and A(n) in L} (D, F(Lﬁ(R)Jr)) respectively, are defined as:
a(fle(g) = (f, 82w, )e(8);
d
at(fle(g) = d_e(g +0f)lo=0
o
d
A(m)e(g) = Ee(e""f) lo=0

forall g L)%(RJr).
For arbitrary f € L;"}OC(RJJ and 7 € L;‘EYUOC(RJF) , they give rise to the operator-valued maps

Af,Aj[ and A, defined by:

Af(8) = alf 1g0,0):
A= a*(F 2100,
A(6) = Amro,)

for all t € R, , where y; denotes the indicator function of the Borel set I € R,. The maps
Af,A}r and A, are stochastic processes , called annihilation, creation and gauge processes,
respectively, when their values are identified with their ampliations on Z ® F(Lﬁ(]RQ). These
are the stochastic integrators in Hudson and Parthasarathy[9] formulation of boson quantum
stochastic integration.

For processes p,q,u,v € leoc(.,(;i-j, the quantum stochastic integral:

J (p(s)dAn(s)+q(s)dAf(s)+u(s)dA§(s)—|—v(s)ds), to,t €R,

is interpreted in the sense of Hudson-Parthasarathy[9].
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2.2. Quantum Stochastic Differential Inclusions

Definition 2. (a) By a multivalued stochastic process indexed by I € R, we mean a multi-
function on I with values in clos(.</).

(b) If ® is a multivalued stochastic process indexed by I € R, then a selection of ® is a
stochastic process X : I — .o/ with the property that X(t) € ®(t) for almost all t € I.

(¢) A multivalued stochastic process ® will be called (i) adapted if ®(t) C Jzﬁf? foreach t e Ry ;
(ii) measurable if t — d,(x, ®(t)) is measurable for arbitrary x € .«/,n,& € (DBE)

(d) locally absolutely p-integrable if t —|| ®(t) ||,,e, t € R, lie in LfOC(I)for arbitrary
1, € (DOE).

For p € (0,00) and I € R,, the set of all locally absolutely p-integrable multivalued
stochastic processes will be denoted by Lfoc(,d )mvs- Denote by LfOC(I X o )mys the set of
maps ® : I X . — clos(.&/) such that t — ®(t,X(t)), t €1, lies in Lfoc(ﬂ)mvs for every
Xely ().

Moreovet, if & € LY (I X &), then we denote by

L(®)={¢ € LP(A): ¢ is a selection of ®}.

Let f,g € L?(]RLF) , T E L;‘En’loc(RJr), I, the identity map on Z ® F(L)z,(]R{Jr)), and M is any of
the stochastic processes Af,Az, Apands— s, s €R,.
We introduce the stochastic integral{resp. differential} expressions as follows:

If®eL? (IX.d)y,and(t,X)€IxL2 (), then

f ®(s,X(s))dM(s) = {f ¢(s)dM(s): ¢ € L2(<I>)}.

0

This leads to the following definition:
Definition 3. Let E,F,G,H € LZZOC(I x /) and (tg, xg) be a fixed point of I X /. Then a relation
of the form

dX(t) € E(t,X(t))dA(t)+ F(t,X(t))dAs(t)

+ G(t,X(t))dA;r(t) +H(t,X(t))dt almostall t €1, (1)

X(to) = xo
is called Quantum stochastic differential inclusions(QSDI) with coefficients E, F, G, H and initial
data (tg, xg).
Equation(1) is understood in the integral form:

t

X(t) e xy+ J (E(s,X(s))dA(s)+F(s,X(s))dAs (s)

to

+G(s,X(s))dA;(s) + H(s,X(s))ds), almostall t € I

called a stochastic integral inclusion with coefficients E, F, G, H and initial data (t, x()
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An equivalent form of (1) has been established in [5], Theorem 6.2 as follows:
For n,§ € DQE, a,f € L%(]RQ with n = c®e(a), & = d®e(f) , define the following
complex-valued functions:
Uap> Vg Oq: I —C, TCR,

by
pap(t) = (alt), T(t)B(t)),,
vp(t) = (f(t), B(t))y,
oq(t) = (a(t), g(t)),,
tel, f,ge Liloc(RJr), e L;‘Eﬂ loc- TO these functions we associate the maps uE, vF, oG,

P from I x .o/ into the set of sesquilinear forms on DQ®E defined by :

(ME)(t,x)(n, &) = {(n, uap(t)p(t,x)E) : p(t,x) € E(t,x)},
(vF)(t,x)(n, &) = {{n,vg(t)q(t,x)E) : q(t,x) € F(t,x)},
(0G)(t,x)(m, &) = {(n,ou()u(t,x)&) s u(t,x) € G(t,x)},

P(t, x)(n, &) = (WE)(t, x)(n, £) + (VE)(t, x)(n, E) @
+ (0G)(t,x)(n, &)+ H(t,x)(n, &),
H(t,x)(n, &) ={v(t,x)(n,&):v(.,X(.))
is a selection of
H(,X()VX € L? ()} (3)
Then, Problem (1) is equivalent to
d
E(T),X(t)i) € P(t,X(t))(n, &), @

X(to) = xo
for arbitrary 1, £ € DQE , almost all t € .
The notion of solution of (1) or equivalently (3) is defined as follows:
Definition 4. By a solution of (1) or equivalently (3), we mean a stochastic process

¢ €Ad(A),pqe N L2 () such that

loc
do(t) € E(t, p(t))dAL(t) + F(t, p(t))dAs(t)

+ G(t, cp(t))dAJg’(t) +H(t,o(t))dt almost all t €1,
v(to) = ¢

or equivalently

d
72 (0,0 ()8) € P(t, ()1, ©),
¢(to) = o

for arbitrary n,&§ € DE, almostall t € I.
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The existence of solution of (1) implies the existence of solution of (3) and vice-versa. As
explained in [5], for the map P:

P(t,x)(n, &) # B(t, (n, xE))

for some complex-valued multifunction P definedonI xCfort €1, x € .o, 1,& € DRE.

2.3. Lower Semicontinuous Multivalued Maps

Definition 5. (a) Let A € clos(.&/) be non-empty and I C R,.
A multifunction ® : I X & — clos(.&/) will be said to be lower semicontinuous at a point
(to,xo) € I X A, if for every € > 0,7m,& € DRE there exists 5,z = 6,:((tg,x(),€) > 0
such that Vx e A, t €l if

dpe ((t, %), (tg, X)) < &,z then ®(tg,xo) C ®(t,x) + By (0).

If ® is lower semicontinuous(lsc) at every point (tq,xg) € I X A/, then it will be said to be
lower semicontinuous on I X A

(b) Analogously if ® is a sezsquilinear form valued multifunction, then the map
& : Ix N — 2°9P8E) i1l be said to be lower semicontinuous at a point (ty, xo) € I X A,
if for e;ery n,& € DYE, € > 0 there exists 5,r = 6,:((ty, Xo),€) > 0 such that Vx € A,
tel i

d'n& ((t) X), (tO’ XO)) < 51;5 then (b(tO’ XO)(n: 6) - ‘I’(t;x)(n, 5) +BE(O)

In what follows, a map shall be called lower semicontinuous on a domain if it is so at every
point of the domain.

The next result shows that, if uE, vF, oG, H are lower semicontinuous then
(t,x) — P(t,x)(n, &) is lower semicontinuous.

Proposition 1. Assume that the following holds:
(i) The coefficients E,F,G,H appearing in (1) belongs to the space LIZOC(I X . ) mys-

(ii) For an arbitrary elements 1, & € DQE, the maps uE, vF, oG, H defined by equation (2)
are lower semicontinuous on I X .<f.

Then, the map (t,x) — P(t,x)(n, &) is lower semicontinuous on I X .

Proof. For an arbitrary 1, & € DQE, since uE,vF,oG,H are lower semicontinuous I x .
Then for any point (ty,x,) € I X ./, given € > 0, there exist One s OneFsOne o Onen > 0,
such that for each M € {uE,vF,0G,H},

M(to, x0)(n, ) © M(£,x)(n,€) +B,(0) Vx € A, almostall ¢ €I and
dye ((¢, %), (to, X)) < e m-
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Hence the proposition follows from the relation:

P(tg, x0)(n, &) = (WE)(tg, Xo)(n, &) + (VF)(tg, x0)(n, &)
+(0G)(tg,x0)(n, &) +H(tg, x0)(n, &) +B.(0)
C P(t,x)(n, &) + Bs.(0).

3. Main Results

In this subsection under some assumptions, we prove an existence theorem for lower semi-
continuous quantum stochastic differential inclusions by using a predefined integral operator.

Definition 6. Let C(I) be the space of continuous maps from I to sesq(D®RE). For all
1n,§ €DRE; X,Z € Ad(H),yqc N L2 (), we define the set:

loc

Hpe = {0, X(0)E) € C(I) : IAERL; | (, X () —X(s))E) [< A |t —s |, t,s €I and X(t) = xo}.

Moreover, the integral operator . is defined as

d
(n,Z(t)E) e P(t,X(t))(m, &) a.e. t €I}

‘gné(X) = {<77>Z(t)§) S ,%,/ng . a

We also define the following sets as applicable in the subsequent result.
For any (t, x),(tg,xo) €I X .o/, A,z > 0, a real number; 7, £ € DQE.

Q(to,xo),lng = {(t,X) eI x J: dng((t) X), (th XO)) < A‘ng}:

where
dye((t, x), (tg, x0)) = max{| t — to [, || x —xq [le},
on,lng = {X SH:4 ” X = Xo ||7]£< A“r).{h
Qu,, = 1x € Tl x Il < Ayeh,
and set

Qe(n, &)= {(H,X€> X E Qe}

In what follows, we make the following assumptions:
I=1[ty, T], Aye >0and Q C I X ./, open, such that:

) Ix Qx(»%g cq,
(i) 3 Ap e >0V M € {E,F,G,H} with maxy Ay r < A, and

(i) || M(t,x) [lye< Ap,ne for each M on I x Q.12 -
’ 227
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Lemma 1. Suppose that K C 1 X o is compact.
For arbitrary pair 1, & € DE, suppose that the multivalued map

(t,x) — M(t,x)(n,&)

is lower semicontinuous for each M € {uE,vF,0G,H}.
For e >0, set

wpee(t,x)=supfwye: [ M(T,0M,E)+Q(n, &) # 0} (5)

(5.0€Q0 0,0y
Then

(a) for some w, > 0 we have

wpe (t,x) 2 w, for all (t,x) €T x 427,7;, & € DRE,

(b) for every continuous u, (t,u(t)) € K, there exists a measurable map t — v(t)(n, &), such
that

dné;:((t: X), (ta U.(t))) < We,
implies

d(v(t)(n,&),M(t,x)(n,&)) <e.

Proof. (a) The definition of lower semicontinuity implies that the set inside brackets in (4)
is non-empty , so that w, .(t, x) is positive.
We claim that it is a continuous function.
Fix o > 0 arbitrarily, and remark that whenever d, ((71,¢1),(72,{>2)) < %,

1 _ — N2
Q = Q(Tl,ijl),we((’rz,ijz)—%" c Q(fz,Cz),we((fz,Cz)—%) =Q

that is,

(| M(OME+QMmE#0=> (] M(T,00,8)+Qc(n,&) #0.

(7,0)eQ? (7,0)eqQ!

Whenever d, -((t,x),(t%,x*)) < %, setting (t,x) = (741,¢;), (t%,x*) = (74, ;) we obtain

20
Wnee(t,X) 2 wye (7, x7) = 3

while interchanging (t,x) and (t*, x*), we have

o
wng’e(f, .X') > a)ng’e(t*,x*) - ?
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Hence (t,x) — w,¢ (t, x) is a continuous and positive map defined on a compact set.
(b) We define the map @, given by

(Lx)—=@(t,)m,E) = ()  MEOMmE)+Qn,&). (6)
(7,0)€Q(t,x),0e

Then & is lower semicontinuous . In fact let y* be in ®(t*,x*)(n, &), so that for every (7, )

in Q(t*,x*),w67
d(.y*> M(T, C)(T)’ g)) =€—- wn{,e(T) g); C‘)ng,e(f: g) >0

or equivalently , there exists y, (7,¢) in M(t,{)(n,&) so that | y* — y,:(7,{) [< e — %
By the lower semicontinuity of M, there exists 6 = §(7,{) so that (t/,{’) in Q(z,0),5 implies
d(y,e(7,8),M(7",¢)(n, &) < 7, hence, in particular

d(y*,M(7",{)(n, &) <e.

The open set

U = U Q(z,0),5(7,0)
(T)C)GQ(I'*,X*),OJE

contains the compact set Q(;+ ,+) ., , hence, whenever
dné((tax))(t*aj(‘*)) < P,

sufficiently small
Qt,x),0, C %,

and thus
d(y*,M(7,8)(n,&)) <eory"ed(t,x)(n,&).

Since the map t — ®(t,x)(n,&) is lower semicontinuous and has closed values, then by
Theorem 2.14.2 [1] there exists a measurable selection v(t)(n, &) of M(t,x)(n, &), which is
the required selection.

Proposition 2. Assume that the following holds

(i) For arbitrary m,& € DQE, the multivalued map (t,x) — G(t,x)(n,&) is lower semicon-
tinuous.

(i) g: 1% .o — sesq(DQE) is continuous single-valued map, and
(iii) ¢: o — R, is lower semicontinuous.

Then the map (t,x) — ®(t,x)(n, &) defined by

®(t,x)(1, &) = By (8(t, x)(m, E))( ) Gt x)(n, €)

is lower semicontinuous on its domain.
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Proof. Fix (t*,x*) in Dom®, y;& € ®(t*,x*)(n,&) and w > 0. For some
>0,y =gt x)(n, &) [=e(x") —o.
There exists §; such that to any (¢, x) € I X .« with d,e((t,x),(t%,x*)) < 6,, we can associate
y(t,x)(n, &) in G(t,x)(n, &) so that

* . o
| Yne (e0) = Ve |< minfo, g},

and &, such that
d'r){((t) x); (t*a x*) < 52
implies
o
e(x) > e(x") - 3,

and 63 such that
dng((t3 X), (t*3 X*) < 63

implies | g(t*, x*)(n, &) — g(t,x)(n, &) |< 5.
Then when d, ¢ ((t,x), (t*,x*) <min{5;, 8, 63},

| y(t,x)(n, &) — g(t,x)(n, E) | I ¥ (£, )1, &) = ¥y | + 1 ¥ — 8(t7,x)(n, &) |
+18(t", x)(n, &) — g(t,x)(n, &) |

O % O

< 3 +e(x*)—o+ 3

o
=e(x*) — 3 <e(x)

that is y(t,x)(n, &) € ®(t,x)(n, &), and

| y*(tzx)(nz g) _J/(t>x)(7b g) |< .

We now prove the existence of solution of Lower semicontinuous quantum stochastic differ-
ential inclusions.

Theorem 1. Suppose that the following holds:

(i) For every n,& € D®E, the map (t,x) — P(t,x)(n, &) is a non-empty compact and lower
semicontinuous multifunction.

(i) (to,xo) €1 x o, for all (t,x) €I x Qu, I A >0, such that | P(t,x)(n,&) |< A.
>2

Then there exists a set #,z and a continuous map ¢ : Kz — LY(I), a selection of Fne

Proof. We shall first show the existence of a finite number m(0) of measurable maps v;
from I into Q,(n,&); of a continuous partition of I into jio = [1% ., 79] with characteristic

-1 i
functions y; such that setting

2@, &) = D 1 (Ovi(£)(n, E),
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we have for every t:

d(g°w)(t)(n, &), P(t,u(t))(n,€)) < 1. (7)

In fact,set in Lemma(1), M to be P, € to be 1 and let w, be the constant provided by (a).
Let %' = Qui,,, we define %#'(n,&) = {(n,x&) : x € %'} a finite open covering of the
compact #,s. Let v;(t)(n, ), be the corresponding measurable functions as provided by (b).

Fix u and t ; where | x(u)(t)(n,&) [> 0, u is in Qi ,, d(vi(t)(n, &), P(t,u(t))(n,&)) < 1,
and (6) holds.
We claim that for n = 0,1, ... we can define ; m(n) measurable functions vl.(") from I into

) — o)

Qx(n, &), a continuous partition of I, ¢, (w), 7; ~(u)] having characteristic functions

xi(") such that setting

gm0, &)= ¥ MW (e)(n, ),
we have

(i) for every t,
1
d(g™w)()(n, &), B(t,u(t))(n, &) < on

1

except on a finite number of intervals , having total length 7,

(i)

1
£ @O, )~ " PO, ) I< Zgn = 1.

Assume the above to hold up to n =v — 1, we shall prove that it holds for n = v.

There exists an open set <" such that all the maps t — vl.(v_l)(t)(n, &) are continuous on
I\ &", and the measure of %" is smaller than #
Let 6 > 0 be such that || w —u ||,s< & implies that for each i,
| 'cl(.v_l)(u) — TEV_D(W) |< (27¥(4m(v —1)))~. A finite number of Qq, 5 covers . For each j
call E; the finite union of open intervals | t — 7;(@;) |< (27" (4(v — D) Li=1,..,mlv-1).
Then whenever u is in Qﬁj’g, when ¢ is any of the closed intervals whose union is I \ Ej,
g w)(t)(n, &) = g 1 @)(t)(n, &) = v} 1 (t)(n, &) for some i.
Hence when t belongs to the closed (I \ E;) \ ", the map t — g" tu(t)(n, &) is continuous.

Set | p}“(t)(n, €) | to be 24 on the open (E; U.~") and to be 23—_1 on the closed I'\ (E; U.&").
The map (t,x) — P;(t,x)(n, &) is defined by

]P)j(t) X)(n, g) = Qg"'_l(ﬁj)(t)(”r],g),|p}/(t)(’r),€)|(n7 g) ﬂp(t3 X)('f), g)

is strict for (t,x) in Q(ta,(0)),6°
In fact, when t is in (E; U&"). It is enough to remark that both ¢"~! and P take values in

QA("’): g)
Let (t,x) : tin I\ (E;U&"), || x —@;(t) l[,e< 6. Then a translate u(.) of @;(.) is in Qa6
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and is such that u(t) = x. For this u, g¥ "1 (u)(t)(n, &) = g”‘l(aj)(t)(n, &) and, by point (i) of
the induction

1
d(g" M w)(t)(n, &), B(t,x)(n, &) < >
Since t — p"(t) is lower semicontinuous and P; is strict, proposition 2 implies that

1

(t,x) = P;(t, x)(n, &) is lower semicontinuous. Set in Lemma 1, M to be P;, € to be o and
call w; the constant provided by point (a). A finite number of Q i wj("r), &) covers the compact
i

Hpe N Qq; 5(n,E) By Lemma 1(b), there exists for each i a measurable v]l:(t)(n, &) such that
d'r)g((t: X), (t; u;(t))) < w; 1mphes

. 1 1
di(Om, ), Bi(6, )0, ) < oo < 57 (8)

The collection of open sets %ji(n, &) = Qaj’g(')’], E)NQy wj("r), &) covers . Let )(J‘: be the
i

characteristic functions of the corresponding continuous partition {Z 7]; £ ;}of I. Set

g @O, E) =Y £V, ).
i,j

We claim that the functions le: and the map g" satisfy our induction assumptions.

Fix u and t. Whenever t belongs to jl.j(u), g'W)(t)(n, &) = v]l:(t)(n,g) and u belongs to
Qu;’wj, and by (7),

. 1
d(vi(t)(n, &), P;(t,u(t))(n, &) < o )]

Since P;(¢t,u(t))(n, &) < P(t,u(t))(n, &), (8) check point (i).

To check point (ii) , assume ¢t in I \ (E; U"). Then p"(t) = !

2v—1 >

P;(6,2)(n,£)) € Qor1@pome). iy = Qv (o) i1

hence
. 1
O, ) Qe 1 EN < 57 (10)
or
1
| 8" @)(t)(n, &) — g"HwW()(n, &) I< ST (1mn

except on an open set (E; U.~") with measure at most 2% The sequence of measurable maps
{g"(w)(.)(n, &)} is a Cauchy sequence converging to some measurable function that we denote

by g(u)(.)(n, &) and g(w)(t)(n, &) € P(¢t,u(t))(n, &).
Let K, ¢ be defined by:

Kpe = {u(t)(n, &) = (n,u(t)E) € Hpe - u(t)(n, &) is Lipschitzian and u(ty)(n, &) = xo}.
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The continuous map ¢ : K,z — K,z defined by p((n,u(t)&)) = (n, ¢(w)(t)E)

t

(n, e(@)(£)€) = xo + f g(u)(s)(n, &)ds,

to

| (n, e(W)(£2)E) — (n, ()(£1)E) | which gives

|J gW)(s)(n, &)ds | <l g |||J u(s)(n, &ds |
EKng.

Moreover,

d
i (n, p(W)()€) = g(wW)(t)(n, &) € P(t,u(t))(n, &).

We are left to show the continuity of ¢. In fact, we shall show directly that ¢ is uniformly
continuous.
From a(ii) above, for every 0, & € DQE,u(t)(n, &) € K,z

v+1 v 2T 2M
| &" " (W)(s)(n, &) — " (w)(s)(n, &) | ds < +
I

2v+1 2’V+1

T+M
= 2,V

so that

f|g”“(u)(S)(n,i)—g"(u)(S)(n,é)|d5+f | g2 W)(s)(n, &) — " W)(s)(m, &) | ds + ..
I I

1 1 1
<(=)NT+M)(A1+-=-4+-+...
< GT+MA+ 5+ +.0)

T+M
= 2n—1’

and since fz | g (w)(s)(n, &) — g(u)(s)(n, &) | ds converges to 0,

| o((n,u(t)E)) — e({n, w(t)E)) |< f | g()(s)(n, &) — g(w)(s)(n, &) | ds
=< f | g"(W)(s)(n, &) — g"(w)(s)(n, &) | ds + f | §"(W)(s)(n, &) — g(w)(s)(n, &) | ds
I I
+f | g"(w)(s)(n, &) — g(w)(s)(n, &) | ds
1

44T+M
Sf | " W), E) — " (W)(s)(n, £) | ds 4+ H L+ M)
I

2n
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Also, by a(ii)

n n 2M
fl | g"(W)(s)(n, &) — g"(w)(s)(n, &) [ ds < T
_ M
= o
Therefore | u(t)(n, &) —w(t)(n, &) |< 6 implies, for every t €1,
T+5M

| (1, e(@)(£)E) = (n, o(W)(£)E) | <

<e.

2Tl

Proving the continuity of ¢. Hence ¢ is the required selection of Z, .

From above we have the following existence result.

Corollary 1. For an arbitrary n,& € DQE, suppose that multivalued stochastic processes
M :Ix.of —2¢P8E” N e fuF VF oG, H}

are compact-valued, lower semicontinuous multifunction.
Let (tg,xp) €l x o.
Then the problem

dX(t) € E(t,X(t))dA(t)+ F(t,X(t))dAs(t)
+G(t,X(£))dA; (£) + H(t,X(¢))dt almost all t €1, (12)
X(to) =xo

has at least one solution defined on I lying in Ad(.),,qc N L% (o).

loc
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This paper is concerned with the value function for optimal quantum stochastic
control. We established the Lipschitz continuity of the value function, which is
inherent from the Lipschitz property of the set-valued map describing the quantum
stochastic control. By using a feedback multivalued map, we also prove a charac-
terization of optimal solutions relating to a noncommutative generalization of
Mayer problem. © 2010 American Institute of Physics. [doi:10.1063/1.3300332]

I. INTRODUCTION

Control theory is one of the major motivations for the development of theory of differential
inclusions. Most problems in classical control theory can be reformulated and solved via set-
valued approach. An extensive study of differential inclusions and applications can be found in
Refs. 1 and 2. Optimal control theory is a systematic approach to controller design, whereby the
desired performance objectives are encoded in a cost function, which is subsequently optimized to
determine the desired controller. The two fundamental tools of optimal control are dynamic pro-
gramming and Pontryagin’s principle. Dynamic programming is a means by which candidate
optimal controls can be verified optimal.7 The procedure is to find a suitable solution to a dynamic
programming equation (DPE), which encodes the optimal performance and to use it to compare
the performance of a candidate optimal control. Candidate controls may be determined from
Pontryagin’s principle or directly from the solution to the DPE. In general, it is difficult to solve
DPEs. In continuous time, the DPE is a nonlinear partial differential equation, commonly called
the Hamilton—Jacobi—Bellman equation. This equation is generally nonsmooth. For a detailed
study of nonsmooth analysis and control theory, see Ref. 6.

In Ref. 5, the control process that minimizes the quadratic performance functional associated
with a quantum system whose evolution is described by Hudson—Parthasarathy-type11 stochastic
differential equation on Fock space was explicitly computed. Moreover, it was shown that the
noisy-infinite dimensional Ricatti equation associated with this problem has a unique solution.’

In an earlier work, Belavkin* considered quantum stochastic control, but the Hamilton—
Jacobi-Bellman equation for quantum optimal feedback was derived in Ref. 10. The value func-
tion is the unique viscosity solution to the Hamilton—Jacobi—Bellman equation. The Mayer prob-
lem of control is concerned with the minimization problem arising from the control.

In Ref. 8, Ekhaguere formulated a multivalued analog of quantum stochastic calculus of
Hudson and Parthasarathy setting. This formulation is a motivation for the study of quantum
stochastic control via set-valued analysis. This work is concerned with the study of regularity
property of value function which is inherited from multivalued stochastic processes involved. The
Mayer problem associated with the problem is shown to have at least one optimal solution when
the value function is directionally differentiable.’

In Sec. II, preliminaries on quantum stochastic differential inclusions and quantum stochastic
control shall be considered. Section III shall be for the statement and proof of the main result.

“Electronic mail: mogundiran @oauife.edu.ng.
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Il. PRELIMINARIES

In this section we define the basic notations that shall be employed in sequel. We also state the
fundamental result which shall be used in the proof of our main results.

Notations. Let L) (D,H) be the set of all linear maps x from a pre-Hilbert space D to its
completion H. Now let I be a pre-Hilbert space with completion H. I, [, and £, >0 be linear
spaces generated by the exponential vectors in Fock spaces I'(L3(R,)), I'(L3([0,7))), and
['(L3([,%))) respectively; where L3(R) (resp. L2([0,1)) [ L3([z,%))t € R,)], is the space of square
integrable Y-valued maps on R,([0,7),[#,%)) for some fixed Hilbert space Y.

A= LDk H e T(L(R,))),
A= L,(DRE,H @ T(L3([0.0) @ I,

A'=1,® LH(E T(L3(t,%))), >0,

where ® denotes algebraic tensor product and 1,(I") denotes the identity map on H
ST(L3(0,0) (T3 ([1,%)), 1>0.

Let the inner product of the Hilbert space H ® I'(L3(RR,)) be denoted by (-,-), and ||-|| the norm
induced by (-,-).

Let (D®LE)., denote the set of all sequences 7={7,},-,, £={&,},_; of members of D®K, such
that

2 (mxg) <= Vxed,
n=1
then the family of seminorms

{I- 7.6 € (DRE)..},

o

where [[|,e= 2% [(7,,%&,)
n=1

, xeApte (D®E).,

generates a topology 7, o-weak topology.
The completion of the locally convex spaces (A, 7,,), (A, 7,,), and (A, 7,,) are, respec-

tively, A, «Zl,, and A'.'?

A. Quantum stochastic differential inclusions

(a) By a multivalued stochastic process indexed by IC R,, we mean a multifunction on I with

values in clos(A).
(b) If ®@ is a multivalued stochastic process indexed by ICR,, then a selection of ® is a

stochastic process X:/— A with the property that X(z) € ®(¢) for almost all 7 € I.
(¢) A multivalued stochastic process @ will be called as follows.

(1) Adapted if ®(r) C A, for each 7 e R,.
(ii)  Measurable if t—>d,(x,®(t)) is measurable for arbitrary x e A (7,§ e DOK).,.

(iii)  Locally absolutely p-integrable if 1+—{|®(z)||,z € Ry, lies in Lf, (I) for arbitrary », &
e (D®L).,.

(iv) Let Ne A, a map
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<I>:I><N—>2“Z

is said to be Lipschitzian if for each 7, e (D®EK).., there exists K‘,I;gzl —(0,%) in
L} (I), such that

loc

P D(1,x),D(1,y)) = K5 0)llx - ¥l e

for all x, y € A and almost all ¢ € 1.

(v)  We say that a multifunction @ is upper semicontinuous at xoe;l if for any open
neighborhood N containing ®(x,) there exists a neighborhood M of x; such that
dM)CM.

We state some other notations which shall be employed.

(1) The set of all absolutely p-integrable multivalued stochastic processes will be denoted by
L (A s

(2) For pe(0,°) and ICR,, Lf (IX .Zl)mVS is the set of maps ®: 71X A—close(A), such that
1—>®(1,X(1)), t 1 lies in LP, (A) s, for every X e L2 (A).

(3) Ifdell (IXA),,, then

loc

L,(®)={¢ e L} (A):@ is a selection of ®}.

loc

In the sequel, f, g € L7 ,(R,), € Ly, 10(R,), 1 is the identity map on H® I'(L3(R,)), and
M is any of the stochastic processes A, A* A, and s—>sl, seR,.

We introduce stochastic integral (differential) expression as follows.

Ifde LIZOC(IX A and (£,X) e IX leoc(;l), then we define

[

0

D(s,X(s))dM(s) = { f @(s)dM(s); ¢ € Lz@)}-

0

This leads to the definition of quantum stochastic differential (integral) inclusion which is a
multivalued analog of quantum stochastic differential equations of Hudson and Palrthasaurathy.ll
We adopt the formulation of quantum stochastic differential inclusions of Ref. 8 as follows.

Let E, F, G, He L2, (IX A) s and (fy,x) be a fixed point of /X A. Then, a relation of the
form

X(1) € xp+ J (E(s,X(s))dA (s) + F(s,X(s))dA /(s) + G(s,X(s))dA;(s) +H(s,X(s))ds t 1)

T

will be called a stochastic integral inclusion with coefficients E, F, G, H, and initial data (¢,,x).
The stochastic differential inclusion corresponding to the integral inclusion above is

dX(1) € E(t,X(1))dA (1) + F(,X(1))dA (1) + G(t,X(t))dA;(z) + H(t,X(1))dt,
(1)

X(1y) =x, almost all 11

By a solution of (1), we mean an adapted o-weakly absolutely continuous stochastic process ¢
e L2 (A), such that

loc

de(1) € E(t,@(1))dA (1) + F(t, (1)) dAL1) + G(t, (1)) dA (1) + H(t, @(1))dt,
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o(ty) = x, almost all 7 e I.

By using the matrix elements of quantum stochastic calculus of Hudson and Parthasarathy;” a
sesquilinear equivalent form of (4) was established in Theorem 6.2 of Ekhaguere.8 These multi-
valued sesquilinear maps were defined as follows.

For 7, £ € (DRE).,, with p=c®e(a), é=d® e(B), define

MC’B’ VB,O'a,:I—> ‘C,I C R+

by

op(t) = (alt), 7(t) B(1))y,
vg(t) = (f(1), B(1))y,

o,(1) =(a(t),g(1))y,

tel, f,ge Lﬁ),loc(R +) (locally bounded square integrable )-valued maps on R,), 7 & Ly y, . [the
space of all measurable, locally bounded maps from R, to B()), the Banach space of bounded

endomorphisms of )/]. To these functions we associate the maps uE, vF, oG, P from I'X A with
set of sesquilinear forms on (D®K),. defined by

(LE)(1,x)(17,8) = {7, pop()p(t.X) €):p(1,x) € E(1,x)},
(vF)(t.x)(n, &) ={(n.v5(1)q(1.x)§):q(1.x) € F(1,x)},
(0G)(1,)(n, &) ={(m, o o(Du(t.x)§):u(t,x) € G(1,.x)},
P(t,2)(,8) = (E)(t,x)(7,€) + (vF)(1,)(,§) + (6G)(1,x) (1. §) + H(1,x)(1,8),

H(t,x) (7,8 = {v(t,x)(5,8):v(.,X(.)) is a selection of H(.,X(.))V X e L2 (A)}.

loc

Then problem (1) is equivalent to (2)

%m,x(t)g) e P.X(1)(7.9).

()
X(t) = xo,

for arbitrary 7, £ € (D®E).., almost all 7 e I.

lll. MAYER PROBLEM

Let T>0, Z a complete separable metric space, called the space of admissible controls;
U:[0,T]— 2%, and P:[0,T] X A X Z— 252902 a6 multivalued maps.
We associate with it the control system

d
d—t<7l,X(I)§>=P(t,X(t),M(t))(7l,§), u(r) € U(), 3)

where P is a selection of P

Let an extended function g: A—RU {+o0} and & e A be given. The Mayer optimal quantum
stochastic control problem associated with the control system (3) is the minimization problem,
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min F{g(X(7)):X is a solution of(1),X(0) = &}.

The value function associated with this problem is defined by, for all (#y,x,) € [0,7] X fl,

V(to,x0) = inf E{g(X(T)):X is a solution of(1),X(z,) = xo}.

A. Remark

We remark that quantum stochastic control has vast applications to quantum physics, for
example;

(i) to determine the optimal trajectory which minimizes the functional corresponding to quan-
tum stochastic kinetic equations of Vlassov and Boltzmann type, in quantum mechanics;

(i)  control of the evolution of a physical system, such as the position of a quantum particle
described by a quantum stochastic differential equation;5

(iii)  control of a qubit system in quantum information;'’ to mention a few.

B. Lipschitz continuity of the value function

Consider an extended function g:]t—>]R U{+x}, E, F, G, He LIZOC[O, T]x A), & e A) and
the differential inclusion,

dX(1) € E(t,X(1))dA (1) + F(,X(1))dA (1) + G(t,X(t))dA;(t) + H(t,X(1))dt almost everywhere.

4)
We investigate the minimization problem,
min {g(X(7)):X is a solution to (4), X(0)=&}.
The corresponding value function is given by, for all (¢,x,) € [0,T]X A,
V(ty,xo) = inf E{g(X(T)):X is a solution of (4), X(zy) = x}, (5)

where minimum is considered over all adapted stochastic control processes X(-).
Let S[,O,T](xo) denote the set of solutions of (4) starting at x, at time ¢, and defined on the
interval [y, T]. The value function is nondecreasing along solutions of (4),

Vx e Sy, Vig=t=1,=T,
V(1. X(11) = V(12 X(1))
and satisfies the dynamic programming principle,

Vit e [ty,T], V(tg.xo) = inf E{V(£.X(1)):x € Sp; 11(x0)} (6)

x € 8, 7)(xo) is optimal for problem (5) if and only if

V(. X(1)) = g(X(T)).

We impose the following assumptions on E, F, G, H, and g,
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(i) E,F,G,H has closed nonempty images,

(i) VX e AE(X),F(-,X),G(-,X),H(-,X) is measurable,

(iii) E,F,G,H is Lipschitz,

(iv) 3yeLY0,7), Yt e [0,TL]|E®0)|,dA (1)
+|[F(2.0)[|dA 1) + |G (2, 0)[ ,edA(1) + [ H (1. 0)l| yedt = (1),

(v) g is locally Lipschitz.

™)

Theorem 1: Assume (7). Then for every R>0, there exists Lp>0, such that

(i) for all (ty,x9) € Qg and every solution

X € Sy n1(x0). V 1 & [1o, TLIX]) ¢ = Lg

and the map [t,,T] 3 t—V(¢,X(t)) is absolutely continuous.

Furthermore, for almost every t € [y, T], the directional derivative [dV/d(1,X'(1))](¢,X(1))
does exist.
(ii)  Forall te[ty,T], V(t,-) is Lg-Lipschitz on Bg(0).

Finally, if for all R> 0, there exists Cx=0, such that for

a.e.t1e[0,T], VXeBg0), sup [[V],:=Cg (8)
Yed(1,X)

(® e{E,F,G,H}), then for every R>0, there exists Cx>0, such that VX € Bg(0), V(-,X) is
Cg-Lipschitz.

Proof: Consider any solution X € Sp; 71(xo) of differential inclusion (4). Then for almost all
te [t 0> T:|9

dX(t) € E(1,X(1))dA (1) + F(2,X(1))dA A1) + G(1,X(1))dA () + H(2,X(1))dt C ||E(2,0)|| ,ed A 1 (2)

+[|F(2,0)|l,,¢dA [2) + |G (2,0)|] ,edA g (1) + [H(2,0)]| et + k(D|x(D)]] 1B e
Then Vre[t,,T],

1

0= ol | svs | K1 s

T 0

This and Gronwall’s lemma yield the first statement. Since V is locally Lipschitz, we deduce (ii)
from Filippov’s theorem.

Let X, € Sy, 11(x). We claim that the map r— V(#,X,(7)) is absolutely continuous. Indeed fix
ty=1;<1,=T. By (4), there exists X, € S}; 71(X;,), such that

V12, X5(15) = V{11, X (1) + |1 = 11
Then from (i) we deduce that for i=1,2,

[5)

IX,(t2) — X)) e = f

n

v(s)ds + J ’ k(s)||Xi(s)||,7§ds = f ’ v(s)ds + L||xof ’ k(s)ds.

1 1
Thus, by (ii), for a constant L depending only on [\xg|| ;¢
0= V(1, X, (1) = V(2. X, (1))

= V(12,X,(1)) = V{12, X5(15)) + |t = 1

= L||X;(22) = X5(0)|[ e + 12 = 1]
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= L(|X,(t) = X, (1;) + X5(12) _Xl(tl)”r]f) + |t -1

5] 2
= ZLJ Y(s)ds + 2LX017§LJ k(s)ds + |t, = 1,]. 9)
' n

1

Recall the following characterization of absolutely continuous maps.
A function f:[a,b]— R is absolutely continuous if and only if

(1) av(f)>0’ Va:aISblS'“Samemzb,

E |f(b,) _f(ai)| =v(f),
i=1

(ii) Ve>0,36>0, such that Va=a;<b;=b, i=1,...,m satisfying Ja;,b[ N ]a;,b[=D for i
#j, E;Zl(bi—ai) = 5 we haVe E:lef(bl) —f(a,-)| =e€.

Thus, by (9) the map t— ¢(r)=V(¢,X,(z)) is absolutely continuous.
Fix tre€(t,,T], such that ¢ and X, are differentiable at 7. Then from the local Lipschitz
continuity of V with respect to the second variable,

. Va+h X () +hX () - V(,X,(1) . elt+h) = e(t)
lim = lim———.
h—0+ h h—0+ h

To prove the last statement of the theorem, observe that (6) and (i) imply that for all R>0, there
exists I, such that every X e S[[O,T](xo) is Iz Lipschitz whenever x, € Bg(0). Fix 0=7,<t; =T,
xo € Bg(0). By (6) there exists X € S, 7(xo), such that V(r,,X(z))) = V(ty,x0)+|t;—1o|. Then
[V(11,x0) = Vtg.x0)| = [V(11.X(2))) = V(tg,x0)| + [V(11.X(21)) = V(t1,x0)| = |17 — 1| + L[ X(2;) _x0||77§
= (Lglg + D]ty = 1]
Existence of optimal solution. To characterize optimal solutions we introduce the following

feedback map, G:[0,7T]X A— 24 defined by

A%
a(1,v)

Y (t,x) € [0,T] X AG(t,x) = {v e V(1,X): (1,X) = 0},

where

W(t,X) = E(t,X(0))dA (1) + F(t,X(1))dA (1) + G(t,X(t))dA;f(t) + H(t,X(1))dt.

Proposition 2: Assume (7). If for some (ty,x,) € [0,T] X A, E, F, G, H is lower semicontinu-
ous at (ty,xy) and for some v € co(W(ty,xy)), the directional derivative of V at (ty,xo) in the
direction (1,v) exists, then this directional derivative is non-negative.

Proof: Consider a solution X(-) of quantum stochastic differential inclusion (2) satisfying
X(to) =x, dX(ty)=v. Since V(z,-) is Lipschitz on a neighborhood of x,, with the Lipschitz constant
independent of 7 and since V is nondecreasing along solutions to (2),

. Vltg+ h,xg+hv) = V(tg,xg) . V(tg+ h,x(ty+ h) — V(tg,x0)
lim = lim =
h—0+ h h—0+ h

0.

|

If E, F, G, H are closed valued, then G has compact nonempty images and is upper semicon-
tinuous, since Graph(G) will be closed.

Theorem 3: Assume (7) and let ty € [0,T]. Then the following two statements are equivalent.
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(i) X is a solution of the quantum stochastic differential inclusion,

dX(t) € G(t,X(2))dt almost everywhere in[t,,T]. (10)

(ii) X is a solution of quantum stochastic differential inclusion (2) defined on [t,,T] and for
every t € [y, T] V(t,X(1))=g(x(T)).

Proof: Fix a solution X of (4) defined on [#,,T] and set ¢(t)=V(z,X(¢)). By Theorem 1, ¢ is
absolutely continuous and for almost all 7 €[z, 7],

@' (1) (£.X(1)).

v
a(1,X' (1)

Assume that (i) holds true. Hence, for almost every ¢ e [#,,T], the set G(¢,X(r)) is nonempty and
¢'()=0 almost everywhere in [f,,T]. Consequently o= V(T,X(T))=g(x(T)).
Assume next that (ii) is verified. Then, differentiating the map 7 ¢(f), we obtain that for
every to<t<T, ¢'(t)=0. Therefore, for almost all ¢ € [1,,T], dX(¢) € G(r,X(r))dr. |
Corollary 4: Assume (7). Then, a solution X € S[,O’T](xo) is optimal for problem (3) if and only
if it is a solution of quantum stochastic differential inclusion (9), satisfying the initial condition
X(to) =xo.
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Abstract In this paper, we establish results on continuous mappings of the space of
the matrix elements of an arbitrary nonempty set of pseudo solutions of non Lipschitz
quantum Stochastic differential inclusion (QSDI) into the space of the matrix elements
of its solutions. we show that under the non Lipschitz condition, the space of the matrix
elements of solutions is still an absolute retract, contractible, locally and integrally
connected in an arbitrary dimension. The results here generalize existing results in the
literature.
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1 Introduction

We establish some results on topological properties of solution sets of a non Lip-
schitzian quantum stochastic differential inclusions given by

dX(t) € E(X(t),)d Ny (1) + F(X (1), )d Ay (1)
+G(X(1),NdA s+ () + H(X (1), 0)dt), X(10) =a, t €19, T] S R4
(1.1)
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Inclusion (1.1) is best understood in integral form as

t
X(t)ea+ | (EX(s),s)d Ny (s) + F(X(s),s)dAg(s)
0]

+G(X(5), $)dA +(s) + H(X(s), 8)ds), 1 € [10, TIC Ry (1.2)

Inclusion (1.2) is understood in the framework of the Hudson and Parthasarathy for-
mulation of QSDE:s, see [10]. Existence and uniqueness of inclusion (1.1) in equation
form has been established in [4] under some general Lipschitz condition. We consider
the equivalent non-classical QSDI given by

d
Z(?’/, X(1)§) € P(X,1)(n.§)

X(to) €a,t € lty, T, (1.3)

Inclusion (1.3) is a first order non-classical ordinary differential inclusion with a
multivalued sesquilinear form valued map P as the right hand side. For more on
inclusion (1.3) and the explicit form of the multivalued sesquilinear form map
(X,t) — P(X,t)(n,&) on DRI appearing in inclusion (1.3) see [1,6] and the
references there in. In what follows, we employ the locally convex space A of noncom-
mutative stochastic processes whose topology is generated by the family of seminorms
defined in [1].

In this work, we consider QSDI (1.3) where the map x — P(t, x)(n, &) is nec-
essarily not Lipschitzian with values that are closed subsets of the field of complex
numbers. In [5], in order to generalize the results in [2], we used the following results
to establish some properties of solution sets of non-Lipschitzian QSDI (1.3).

It was established that for the non-Lipschitzian inclusion (1.3) corresponding to
each pseudo solution process ¥ € Ad (fi)wac, where

d
d (E (n, Y(0)§), Pz, Y(t))(n,f;“)) = Wpye(0), 1 € [10, T,

Pne € L}OC([to, T1]), there corresponds a solution R(Y) € Sy (Y (#p)) such that
1Y(@) — RY)@)lpe < Eye (@), t € [0, T] (L4

and

d Yt d R(Y)(t
o 0. Y(OF) = £ (0. RODE)

= W(Kys O Epe (1) + ppe (1)), t € [t0, T (1.5)

where IE; ¢ (t) and K¢ (¢) are as defined in [1] but with W () # 1.
This paper is therefore concerned with similar extension of the results in the litera-
ture to a class of inclusion that does not depend on the Lipschitz condition W (¢) = t.



On topological properties of solution sets of non Lipschitzian...

This paper is organized as follows.In Sect. 2, we present some definitions, prelim-
inary results and notations while Sect. 3 is devoted to the main results of our work.

2 Notations and preliminary results

From the references [1,6], we adopt the notations and definitions of the spaces clos (A),
N, clos(N), comp(N), wac(A), the space of complex functions wac(A) (7, £). For
any element y € AC([t9, T'], C), we employ the norm defined by

T

dy
—(t)|dt,
dt()

lylac = |y (i)l +/

fo

and for any nonempty set Y € clos(AC([ty, T], C)), we employ the point - set distance
defined by: dac(y,Y) :=inf;cy|y — zlac, the distance d(x, A) of a point x from a
set A € clos(C) is defined by d(x, A) = inf{|x —a| : a € A}. Hence, (2.1) in [1]
holds in this case.

For ® € wac(A), M € clos(wac(A)), we define dyg (O, M) = infycp|®—ulye
and the set of all solutions of QSDI (1.3) is defined by

Say(P) = ] Say(@)
acA

and the associated space of absolutely continuous convex valued functions correspond-
ing to each pair of 1, § € DI by

Sry(P) == {(n, ®()E) : ® € S\ (P)}.
The map (¢, x) — P(t, x)(n, &) appearing in (1.3) is assumed to satisfy the following
conditions .

(1) For each point (z,x) € I x A and n,& € DRI, the values of P(t, x)(n, &) are
still nonempty closed, subsets of the field C of complex numbers.

(2) The map r e— P(t, x)(n, ) is measurable

(3) There exists a measurable map K,f [0,T] — R4 lying in Ll()c([to’ T1) such
that

P(P(t,x)(1,€) = P(t, 7)1, §)) < K. (OW (Ilx = yll¢)

for ¢t € [0, T'], and for each pair x, y € A.

2.1 Remark

(i) The conditions (1) and (2) are similar to the conditions S(;y and S;;) in [1], while
condition S(;;;y in [1] has been been replaced with condition (3) where W (t) # t.
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For arbitrary pair of elements n,& € DQ®IE, and for any process y € wac(A)
and a family of processes {y;};>0 € wac(A), we employ the respective notations
Ve (), ¥pe, j(), j=0,1,...asin [1]. For any non empty subset M C wac(fl) we
define the function space M (n, &) = {®y: (1) := (n, P()§) : ® € M} and for any
element y,¢(.) € M(n, &), we define the number

Ayne) = dac(yys (), S(P)(1. §)).

(i1) We adopt the conditions of definition 2.1 in [1], since the Lipschitz function is not
explicitly dependent on time.

Again we adopt the following result established in [1] for the same reason explained
in (ii) above. We only state the Lemma and refer the reader to the reference [1]. Hence
all results of Lemma 2.2 established in [1] hold in this case.

Remark: Proposition 2.2 has been established in [1], under the Lipschitz condition
W(t) = t. Hence here, we shall only write out the major changes due to the general
Lipschitz condition defined above.

3 Major results

In this section, we present our major results. The method we employ here are simple
extension of the methods employed in [1] and the references there in.

Theorem 3.1 Assume that the map (t,x) — P(t, 3()(7], &) satisfies conditions (1) to
(3). Also assume that a non empty set M C wac(A) is given and there exist positive
Sunctions pye, Nyg @ [to, T] — Ry lying in L! ([to, T1, R4) such that

loc

d
d (E (n, Y (1)&), P(t, Y(t))(n,é)) < Wpone (1),
and

d
’— M, Y@®E) < Npe(t),t €19, T],Y € M.

dt

Then for arbitrary € > 0, there exists a continuousmap R : M(n, &) — Sy (P)(n, &)
in the norm topology of the space AC ([tg, T'], C) such that:

1. R(ype())(t0) = yne (to).
2. R(ype () = ype (), for ype € M(n, &) () Scry(P)(n, §).
3. [R(pe () (@) —ype ()] < WEye () +e,t € [10, T1, yye € M(n, )\ Sry(P)(n, §)

Proof Let € > 0 be given and for k = 0, 1, 2, ... define a sequence of real positive
numbers that depend on 1, £ by:

€
2k 2exp [2W M6 (T)]

ax 3.1
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Then there exists a number oo = 0¢(7, &) depending on 7, £ such tha t

€ (0 70
a  ——
0 3+ AWM, (T)

and
/ Npe (1)dt < ag 3.2)
A
for every measurable set A C [1y, 7] satisfying ;t(A) < op. The results (3.3) to (3.18)
in [1] hold here. O
Next by (3.18), we have

t
d(Go(yng)(t),P(l,)’(to)-i-/ go(y)(S)dS)(n»é))

4]

t
=d (B(Yné,j)(t), P(t, y(t) +/ go(y)(s)ds)(n,é))

fo

d d
Sd(d (n. y;()E) + By, 0= (17 yi(1E), P(t,yj(t)(n,é))

+p (P(I7Yj(f)(7),§)» P(t, y(to) +/ go(y)(s)ds)(n,é))

fo

d
Bpe, j (1) — (n y,(t)é)‘

)

d
Byg,j(1) — (n ¥; (t)é)’

d
=d (E (n, yi (&), P(t, y;(1)(n, 5))

t
yi@®) —y@)+y@) —/ go(y)(s)ds)

fo

+K,7§(I)W(

d
—d( (n. y;j (&), P(r,yj(r))(n,s))

FKne (OWype, j (@) — ype (O] + Kpe ()W

ype () — yUS(tO)/ GO(yné)(s)ds
fo

d d
fd(a (n,y,-(t)s),P(r,y,-(r))m,s)) B (1) — (n y](t)s)‘

+Kye ()W |yng,j(t) — Y& (t)| + 300W K¢ (t) by (3.18) (3.19)
d
<d (E (. yj &), P, y; )@, 5)) + By (1) (3.20)
where
d
Bog (1) = 400 W Kye (1) + 3 | Bre,j (1) = — {0, y;(08) (3.21)

jz1
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The estimate given by (3.20) holds by applying (3.17) in [1]. Again by applying
(3.2) and (3.3) in [2006] to (3.21) above we get

T
/ Bne ()dt == |Bns ()1 < ato. (3.22)
fo

Next, we shall establish a sequence of

1. Continuous decomposition {T;‘ (¥ne)}j=1, k > Oof the interval [¢y, T] correspond-
ing to a stochastic process y € M\Sr)(P) with the associated matrix element

yng € M, E\S(1)(P)(1, §).
2. Mappings gk : M — L }oc (A) with the associated continuous sequence of maps

Gr: M, &) — L] ([t, T1,C), and

loc

3. Functions §pe £ (.), Nyg () € L'([to, T1, R ) corresponding to arbitrary pair of
elements 1, § € DYIE.

By induction hypothesis, suppose that (i), (ii) and (iii) have been constructed and let

t
I (y)(@®) = y(to) +/ gk(y)(s)ds, yeM, k>0

]

and the results (3.23), (3.24) and (3.25) in [1] also hold for £ = 0 in this case.
Similarly by applying Lemma 2.2 to the set y € M (n, £§)\S)(P)(n, &) and some
additional conditions in [1], we see that (3.26) to (2.29) in [1] hold here again.
For T € T;‘“ (vp¢) and by (3.28) in [1], we have:

|Gk (pe) (@) = Gra1 () (D] = |G () (1) — Upe, (1)
< |Upe.j ) = Gi(yne, ) (O] + |Gr(yme, ) (1) — Gi(yne) (1)
=d(G(yne) (@), P(t, k() (@)1, €)) + |Gr(yne, ) (1) — Gr(yne) (1)
< d(Gi(yye, O, P(t, (@)1, €) + p(P(t, I(3)(1) (1, £)
—P(t, I(y))(1)(n, £))
+ |Gk (e, ) (@) — Gr(yye) (1) |
< d(Gik(ye) (), P(t, L)) (1, &) + p(Pt, I(») ()1, §)
—P@t, L(y))(1) (1, £))
+2|Gr(yne, ) (1) — Gi(yne) (1)
< d(Gi(ye)(®), P(t, k() ®) (1, E)) + Kne OW (| I (yye) (1) — Ik (yye, j (1))

2 D X7 (01 (e AT 3y O N (O (3.30)
jz1

Furthermore, we have

d(Giy1(e) (@), P (2, I(y) (@) (0, §)) = d(Uye, j) (@), P(t, Ik (y)(1))(1, §))
= p(P(t, I (yj) (@) (n, &) — P, I(y) (@) (1, §))
= Kpe OW (e (yng. j) (0) = Jic (e j (1) (3.31)
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Applying (3.20), (3.30) and (3.29) in [1], we get (3.32) in [1].
Employing (3.29), (3.30) and (3.31), we have

t t
/ |Gk+1(}’n§)(s)—Gk(yné)(5)|d55/ d(Gi(yne)(s), P(s, I(yne)(s))ds
fo

0]
1 WM,:(T) + 2 !
g1 (6 + WA;:&W) E/to d(Gr(ne)(s), P(s, Ik—1(yne)(s))ds

t
+/ p(P (s, Ik (y)()) (1, §), P(s, Ik—1(y)(5))(n, §))ds

fo

T (l+ WM,7,;(T)+2)
N6 T 6WM,e(T) + 4

t
< / (G () (). P(s, Teor (v )($))ds

fo

t
+/ Kne (OW [Tk () () — Te—1(vne) ()| ds

fo

. L, WMy (T) +2
oot (L4 WM +2
N6 T 6WM,e(T) + 1

t
= / Kpe ()W | Jx(pe) () — Jeo1 () (9) | ds + gy (3.33)
0]
Continuing the iteration in (3.33) and using (3.32) and the relation

t
[k (rme) () = Tem1 (vpe) ()] < / |Gk (pe) W), (Gr—1 (vpe) ()| du
0]

by induction, we have

t
/ (G e )(8). (Gar (e)(5))] s
o

"W (M — (M k
5/ ( né)(t)k! (Mg (5)) pre ($)ds + s

fo

k M k
+W(MWS(T)O”‘ +ot (Mnsk)v(t)) a) + ( nék)'(t)) ao)

CW (M) (1) — (Mye () W (Mye) 1))k

o (3.34)
Applying (3.29), (3.31), (3.34) and the Lipschitz condition W () # t, we get:

d(Git1(pe) @), P(t, In (1) () (0, §))
< d(Gr1(ye) (1), P (1, I (yne) (1)) + Ky (OW [ Ji1 () (1) — S (yye) (D]
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t _ k
O] +/ (Mye) (1) — (Mg (s)) pre (5)ds
0]

= Kag ()W (MnE(T) k!

!
€ . (Mye) (1) ao)

2k+3 k!
= Wine k+1(0) (3.35)

Showing that the map ¢ye x+1(.) € L ([to, T1, Ry) with W(z) # t.

Remark Following the procedure of [1] and the conclusion of Lemma 2.2 we can show
in a similar manner that the map G4 : M(n, &) — Ll([to, T1], ©) is continuous,
and hence every other results holds concerning the map.

Lety € M(n, £). Summing of the inequalities in (3.34) and applying the definition of
o, we have:

t
/ |Gt (7 )(5) — Golyme)(s)| ds
1

0
t k ¢
< W/ exp(Mye (1) — Myg () pye (s)ds + > s T+ Wexp(My (D)oo
fo v=0

€
* Waexp(2M, £(T))

! 2
<Ww / exp(Mye (1) = My () pye ()ds + 35
]
t
< W/ exp(Myg(t) — Myg (s)) ppe (s)ds + g (3.36)
0]

By employing (3.36) and (3.18), we obtain:

[T 1 () () = () (1) |
< | Tes 1) (1) = Jo ) O] + | Jo (e (1) — () (@)

' € €
114 Mg (1) — M, ds+3
< /to exp(Myg (1) ng (8)) png (s)ds + 2 + Waexp(2My £(T))

< WE,(t) + € (3.37)

Since
[ i1 Ome) — Tke)| 40 = [Tka1 () (10) — T (yye) (20) |

T
+/ |81 (e) () — gk (ne) ()| s, yye € M(n, £),
fo

then from (3.34), we conclude as in [1] that the sequence of functions {J (y,¢} con-
verges in AC([tp, T], C) to a function R(y,s) € AC([to, T1, C). Given that the

sequence {Jx(ype)} € wac(ﬂ),

., L(y)()E) =, k(M (@)E) .y € M
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and

g
[T (D) ne = Ik (¥)(t0) |1 ne +/ 7 m, I (y)(®)&) | dt

fo

dt

g
[Jk (yne) (20) ] +/ EJk(yns)(t)

fo

Thus by (3.34), the sequence {/;(y;¢)} is a Cauchy sequence in wac(fl) which con-
verges to a map F(y) € wac(fl) where (n, F(y)(#)§) = R(y;e)(t) and R(yys) €
wac(A)(n, ). By the continuity of the maps Gy, the map R is also continuous and
every other results in [1] holds here again.

Next, we show as in [1] that F'(y) € S¢7)(P). We have the following:

d
d (E (n, F) (&), P(t, F(y)(©)(n, S))

d
= d(Gir1(yge) (1), P, I(y) () (1, §)) + ‘E . F)(@)E) — Grr1(yye) (1)

+Kpe (W] (n, FO)(0E) = (0, L(y)(0)E) |- (3.38)

Applying (3.31) and (3.29) to d (%(n, yvi®)E&), P(t, F(y)(®))(n, 5)) of (3.38) and
integrating both sides we get:

T rd
/ d (d— (. FG)DE) . P(t, FOYD)(n, s>)
In) t

T t
< / Kye(W {| Yuej — Y| 4o /l > xTik(yns.j)Mik(yﬂs)(s)N,,g,k(s)ds} di
0 jz

fo

Trld
+/ (‘d_ (n, F()®)&) — Gig1(ype) (1)
Iy !

+Kne (W (| (n, FO)(0E) = (0, k() (0)§) |1

1l d
< Qg+l +/ (‘— n, F()®E) — Grr1(yye)(0)
1o

dt
+Kpe(OW| (0, FO)(E) — (n, L) (E) |) dt.

Taking the limit as k — oo, we have

d
d (E (n, F)(0)§), P(t, F(y)(®)(n, é)) =0

Hence F(y) € S¢r)(P) and therefore

(n, F(y)()E) := R(yye) () € S(r)(P)(n, §).
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We have been able to show that the results in [1] need not be restricted to the Lipschitz
condition W (¢) = t. But can be extended to a general condition as explained above.
Hence under this condition it is possible to re - construct a mapping Y (.) — F (Y (.)) of
an arbitrary nonempty set of pseudo solutions in the space wac(A) with the property
that the map Y (.)(n, &) — F(Y(.))(n, &) is continuous in the topology of the space
wac(j)(n, &) for each pair n, £ € DQIE.

Remark The results of corollaries 3.2, 3.3 and 3.4 in [1] concerning the selection from
the multifunction (n, x§) — S(r)(x)(n, &) without any restriction on the domain of
the selection map also holds in this case without any modification.
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Continuous Selections of Solution Sets
of Lipschitzian Quantum Stochastic
Differential Inclusions

E. O. Ayoola'-?

A multifunction associated with the set of solutions of Lipschitzian quantum stochas-
tic differential inclusion (QSDI) admits a selection continuous from some subsets of
complex numbers to the space of the matrix elements of adapted weakly absolutely
continuous quantum stochastic processes. In particular, the solution set map as well as
the reachable set of the QSDI admit some continuous representations.

KEY WORDS: QSDI; continuous selection; adapted processes.

1. INTRODUCTION

This paper is concerned with the problems of continuous selections of mul-
tivalued solution maps of quantum stochastic differential inclusions in integral
form, given by

X(t)ea+ / E(s, X(s))d Ny (s)+ F(s, X(s))dAs(s)
0

+G(s, X(5))dA} () + H(s, X(s))ds, almostall ¢ &[0, T].

(1.1)

QSDI(1.1) is understood in the framework of the Hudson and Parthasarathy (1984)
formulation of Boson quantum stochastic calculus. In the notations and definitions
of various spaces of stochastic processes introduced in the work of Ekhaguere
(1992), the coefficients E, F, G, H, lie in leoc([O, T] x A)mvs, where A is a lo-
cally convex space and (0, a) € [0, T] x A is a fixed point. The maps f, g, 7
appearing in (1.1) lie in some suitable function spaces. The integrators A, A;"
and Ay are the gauge, creation and annihilation processes associated with the
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basic field operators of quantum field theory. As in our previous works (Ayoola,
2001, 2003a,b) concerning some approximation of the reachable sets and solutions
of QSDI (1.1), we consider the equivalent form of (1.1) given by

d
2. X(0F) € P, X)), §)

X(0)=a, te[0,T] (1.2)

Inclusion (1.2) is a nonclassical ordinary differential inclusion and the map
n, &) — P(t, x)(n, &) is a multivalued sesquilinear form on (]D@]E)2 for (¢, x) €
[0, T] x A. We refer the reader to the works of Ekhaguere (1992, 1995, 1996)
for the explicit forms of the map and the existence results for solutions of QSDI
(1.1) of Lipschitz, hypermaximal monotone and of evolution types. We follow
the fundamental concepts and structures as in the references by employing the
locally convex space A of noncommutative stochastic processes whose topology
is generated by the family of seminorms {||.x||,c = |{n, x&)|, x € A, n, &€ € DQE}.
Here, as usual, the underlying elements of A consists of linear maps from DE into
R® F(L}Z,(RJF)) having domains of their adjoints containing DIE. In particular,
the spaces Llf)c(fl), L;?IOC,(RQ, L 1}:)(:(1 x A) for a fixed Hilbert space y are being
adopted as in the above references.

In what follows, we consider QSDI (1.2) where the map x — P(¢, x)(n, &)
is Lipschitzian with values that are closed (not necessarily convex nor bounded)
subsets of the field of complex numbers. The point a ranges in a subset A of A
such that the set A(n, &) := {(n, a&) : a € A} is compact in C.

We denote by S)(a) the map that assigns to each point a € A, the set of
solutions of QSDI (1.2) and prove a continuous selection theorem from the map
SD(a)(n, €) where

SD(@)n, &) = {(n, @()&)/® € SP(a)}.

An important consequence of our main result is that the set map (n, a&) —
ST (a)(n, &) can be continuously represented in the form

g((n, a&),U) = SV (a)n, &).

Similar result holds for the case of the map from (1, a&) to the set R (a)(n, &),
where

RD(a)(1, §) = {(n, ®(T)8)/(T) € RV(a)}
is the set of complex numbers associated with the reachable set
RD(@) = {o(T)/® € SV (a)}

of QSDI (1.1) at time T (see our previous work, Ayoola (2003b) for details).
Our results in this work are extensions of the results of Cellina and Ornelas
(1992) to the present noncommutative quantum setting involving inclusions in
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certain locally convex spaces. We adapt the arguments employed in the reference
to conform with our noncommutative stochastic analysis.

Problems of continuous selections of classical differential inclusions have
attracted considerable attention in the literature. Some selection results at the clas-
sical setting can be found in the works of Cellina (1988), Aubin and Cellina (1984),
Fryszkowski (1983), Antosiewicz and Cellina (1975), Colombo et al. (1991) and
the book by Repovs and Semenov (1998). As shown in the work of Cellina and
Ornelas (1992) selection results have been used to show that the solution set-map
and the attainable set admit some continuous parameterizations. Broucke and Ara-
postathis (2001) have established the existence of a continuous selection from
the set of solutions that interpolates a given finite set of trajectories of Lipschitz
differential inclusion.

The rest of the paper is organized as follows: In Section 2, we outline some
fundamental definitions, notations and results concerning the selection results.
Section 3 is devoted to the establishment of the main results of the paper.

2. NOTATIONS AND PRELIMINARY RESULTS

We shall employ the following notations in what follows. If A/ is a topological
space, then clos(V) (resp. comp(/V) ) denotes the collection of all nonempty closed
(resp. compact ) subsets of A/. We shall employ the Hausdorff topology on clos(.A)
as explained in Ekhaguere (1992).

We denote by p(A, B) the Hausdorff distance between the sets A, B in
clos(C). The distance d(x, A) of a point x from a set A € clos(C) is defined by

d(x, A) = inf{|x —a| : a € A}.

We denote by 7, the interval [0, T'] and the characteristic function of a subset E of
1'by xe. .

As explained in Ekhaguere (1992), we consider the space wac(A) the com-
pletion of the locally convex space (Ad(A)yac, T%*) where the topology 7%
is generated by the family of seminorms {| - [,,¢ : n,§ € DI} defined for each
® € Ad(A)yac by

T
Dle = 100 +/
0

d
25\ ®(S)§>‘ ds.

Associated with wac(fl), we define for arbitrary 1, § € DQLE, the space of complex
valued functions

wac(A)(n, §) = {(n, P()&)/P € wac(A)}.

We remark that each element @, () := (5, ®(-)§) of wac(A)(n, £)is an absolutely
continuous complex valued function on the interval [0, T']. We assume that A is a
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subset of A such that the set of complex numbers

A, §) = {(n, a§)/a € A}

is compact in C with diameter Dyg = sup, yca¢¢) 1X — Y1

Furthermore, the map (¢, x) — P(¢, x)(n, £) appearing in (1.2) is assumed to
satisfy the following conditions.

Sy The values of P (¢, x)(n, &) are nonempty closed, subsets of the field C
of complex numbers.

Siiy Themap t — P(t, x)(n, &) is measurable.

Siii) There exists a map Kf; : [0, T] — R4 lying in L} ([0, T]) such that

loc

P(P (1, x)(n, §), P(t, )11, ) < K (O)lx = Yllpe

fort € [0, T], and for each pair x, y € A.
S(iv) There exists a stochastic process Y: [0, T] — Alying in Ad(A)yqc such
that the map

d
t—d (E(n, Y (0)§), P(1, Y (), 5))

lies in L}, ([0, T]).

From the result of Ekhaguere (1992), it is known that under the conditions
Sy 1o S(ivy, QSDI (1.1) admits at least one adapted weakly absolutely continuous
solution for each a € A. We denote the set of all such solutions, with the topology
of wac(A) by ST (a).

To prove our main result in Section 3, we need an important notion of partition
of unity.

Definition 2.1. Let A be a subset of A such that for arbitrary elements 7, £ €
D ®E, the set A(n, &) is compact in the field of complex numbers.

Let {Q2;};c; be an open covering for A(n, &) with a finite open subcover-
ing {Q;},i = 1,2, ---m. A family of functions {P;(-)},i = 1,2---m defined on
A(n, &) is called a Lipschitzian partition of unity subordinated to the finite sub-
covering if:

(i) P;(-)is Lipschitzian for all i = 1,2 - - - m. That is, there exists constant
L ¢ such that for any pair a,¢, a,’7§ € A(n, £), we have

|Pi(aye) — Pi(aye)l < Lyglage — apel.
(ii) Pi(@e) > 0 for ae € 2 0 A(n, §) and Pi(ays) = 0 for aye € A(n, §)\
Q;.

(iii) For each a,e € A(y, £), Z Pi(ay:) = 1.

i=l1
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Lemma 2.1. Let A C A such that for arbitrary n, £ € DQE, the set A(n, &) is
compact in C. Then there exists a Lipschitzian partition of unity subordinated to
any finite subcovering of an open covering for the set A(n, ).

Proof: Let{2;},i =1,2---m be afinite open subcovering of an open covering
{Q;}ics of A(n, &) inthe field of complex numbers. First, by Lemma 2.1 in Smirnov
(2002) for Q < C, the map g : C — R, defined by ¢g(x) = d(x, Q) satisfies for
X1, X2 € C

lg(x1) — g(x2)| < |x1 — x2].

Fori =1,2---m, define the functions ¢; : A(n, &) — R, by

qgi(aye) = d(ans, A(n, §)\2;)
and functions P; : A(n, &) — R, by

qi (ané)
Pi(ay) = =———— 2.1
Y gian)
For at least one j € {1,2---m}, ay € 2;. Therefore Z qjlaye) > 0.
j=1

Consequently, (2.1) is well defined.
Moreover, for each a,: € A(7, &), Z Pi(ay:) = 1and P;(aye) > Ofora, €

i=1
Q; N (A, §)), and Pi(ays) = 0 for aye € A(n, §)\2;.
Next we show that each function P; is Lipschitzian on A(n, ).
Since the set A(7, §) is compact, there exist numbers M, m,¢ > 0 such that

m
My < qu‘(ans) < My
j=1

for any element a,: € A(n, §).
For any pair a,¢, a,. € A(1, &), we have

_ \qiaye) Y qane) — qilane) Y7 q(a),)|
D aj(ane) Y5 aj(ane)
_ laitay) Y 4ane) — i) Ty 5|

= 2
Mg

|Pi(ans) — Piay)l

1 & ,
- ;uqf (@)q (@) — qi(ane ) (ane)|
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+ 19i(ane)q j(ane) — qiae)q (@)

1 u , m
= ) (Z qjane)laye — aye| + qilans) Z laye — a;]s|>
né —1

j=1 J

- (I +m)M,;

!
2 lane — ané"
Mg

where we have used the inequality
14i (@) — gi(ans)| < la; — ayel

satisfied by each function ¢;(-), i =1,2---mon A(n, ).
(14+m)M ¢
= 5,

Thus P;(-) is Lipschitzian with Lipschitz constant L,; = ———= O
i Mg
Next, we present a proposition which we shall frequently use in the proof of
our selection theorem. We obtained the result by adapting its classical analogue
presented in Cellina and Ornelas (1992) to the present noncommutative quantum
setting.

Proposition2.2. LetVy, Vi, - - -V, be stochastic processesin L llOC(A) andfor any
pair of points n,§ € DQE, let {I;(a,:)} be a partition of the interval I = [0, T ]
into a finite number of subintervals with endpoints depending continuously on the
point aye == (n,a),a € A.

Consider the map
t m
W :aye — ag —l—/ ZXI,»(a,,g)(an’ Vi(s)§)ds.
0 j=0

Then there exists a map Rye(t) lying in L} ([0, T1) such that for every € > 0, there

loc

exists > O such that |aye — ae| < 9 implies that

d d
‘EW(%S)(’) - EW(a,,g)(t)

< Ry () xe(t),

for some set E C [ with measure W(E) < €.

Proof: First, we assume the hypothesis of Lemma 2.1. By the conclusion of the
lemma, there exists a Lipschitzian partition of unity P;(-) subordinated to a finite
open subcovering of A(n, £).
Let € > 0 be given. Define for each a,z in A(n, §),
[0((1,75) =0, lj((l,’g) = [j—l(aﬁf) + TPj(ang), 1< J < m.

Then for each j, ¢; is continuous on A(#, §). This can be shown as follows:
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For any pair a,¢, a,’ﬁ € A(n, &) we have
|tj(ane) — ti(aye)| < |tj—1(ans) — tj—1(ape)| + T|Pj(ays) — Pjlae)I< |tj—i(an)
—tj—1(ape)l + T Lyglags — ayl,

since each P;(-) is Lipschitzian.
At the jth iteration, we have

|tj(ane) — ti(age)l < JT Lyglags — ayel.

Putting §; = , then whenever |a,: — a;§| < d;, we have

e
TTLy
|tj(ane) — ti(an)| < e

Now we define the intervals [ j(aye) = [tj—1(aye), tj(ape)) for j =0, 1, - -m.
Thus

[=[0,T]= U I(an).
j=0

We observe that for any two points a,, agg € A(n, &), we have the following
estimate

d d 7
TW(@e)©) = — W@ 0| < ;x,,.(anéw,.w;gm(r>||V_,-(t>||,,g

=D Xiyapan @y OR () (22)
=0

where R,¢(t) = max; [|V;(f)|],¢, for each ¢ € [0, T] and
i(age) Al j(aye) = [ j(ang) N (L j(age)\1j(a))]
U@\ (@) 0 1@,

We remark that the family of sets {/;(a,s)Al; (a,’ﬁ)} are pairwise disjoint. Putting
E =] ¢ Ij(ay)2l(ay), then from (2.2),

J d_
‘EW(a,,g)(t) — SW @O = X OReD)

where by the properties of characteristic functions (see for example, Halmos,
1988),

m
xe(t) = Z X1 ()05 (1)
=1
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Since the set A(n, £) is compact in C, then the family of functions {¢;} is auniformly
equicontinuous family of real valued functions. Thus for every € > 0, there exists
8 > 0 such that for every a,¢, a;‘é € A(n, &) satistying

|aps — ane| < 8,

then
, €
|tj(a,7§) — lj(an§)| < m
Hence,
, €
n(l j(ane) Al () < 2t j(ans) — tj(ane)| < e
Consequently,

WE) =Y (@)Dl i) < €.
=0

3. MAIN RESULTS

We present in this section, our main results. In what follows, for points
a €A, k=0,1,2---,and ¥, € S(T)(ak), wesetays r = (n, a;&) and q)ng,k(') =
(n, ©r()§).

Our method of proof for the main results below, is an adaptation of the
arguments employed in Cellina and Ornelas (1992) concerning similar result for
classical differential inclusions. In addition, we employ successive approximations
similar to what we have in Ekhaguere (1992) for proving the existence of solutions
of quantum stochastic differential inclusion (1.1).

Theorem 3.1. Assume that the map (t, x) — P(t, x)(n, &) satisfies conditions
3(,‘) — S(,'v).

Let &g € ST(ap) f0r~a fixed point ay € A. Then there exists a continuous
map W : A(n, &) — wac(A)(n, &), a selection from ST (a)(n, &) such that

W(ang,()) = Cbng!().
Proof: Since ®¢ € ST (ap), then D¢ € Ad(A)wac. By the properties of the so-

lution established in Ekhaguere (1992), there exists a stochastic process Vj :
[0, T] — Alying in L! (A) such that for almost all ¢ € [0, T],

loc

o(t) = ap + / Vo(s)ds @3.1)
0
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and for arbitrary n, £ € D ® E, we have

d
(. Vo()§) = a(n, Do(5)§) € P(s, Po(s))(n, &), s€[0,T]

Now for arbitrary element a € A, set
Y A— Wac(fl)
to be
t
Y(@@(@)=a+ / Vo(s)ds.
0
Associated with the map Y, we set the map
W A, §) — wac(A), §)
to be
t
Wia)n) = a + [ (. Valo)ghds.
0
We remark that the map W is well defined and continuous on A(n, &) and that
d
EW(ane)(t) = (n, Vo(1)§).

Furthermore,

d
d (EW(ang)(l‘), P(t, Y (@)(0))(1, s>)

d
=d (EW, Qo(1)€), P(t, Y (a)())(n, E))
= p (P, Y(ao)))n, §), P(t,Y(@)))(n, §))
< KLY (@0)(@) = Y @)@l
=K. (D)llao — allye.

Since the map ¢+ — P(¢, Y(a)(t))(n, &) is measurable with closed values in the
complex field, then by Theorem 2, Chapter 1, Section 14 in the book of Aubin and
Cellina (1984) (see also Ekhaguere, 1992), we can choose Uy(a)(¢)(n, &) to be a
measurable selection from P (t, Y (a)(¢))(n, &) such that

d d
EW(ang)(t) — Uo(a)(t)(n, E)‘ =d (Ew(ans)(t), P(t, Y (a)(0))(n, 5))

< K (Dllag — allye. (3.2)
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As the map (n, &) — Up(a)(t)(n, §) is a sesquilinear form on D®E for almost
all ¢ € [0, T] and by the adaptedness of Y (a), there exists an adapted stochastic
process Ug(a) : [0, T] — A such that

(n, Uo(a)()§) = Uo(a)(t)(n, §).

By Equation (3.2), the process Uy(a) lies in L} (A), for any a € A. This assertion

loc
follows from the fact that from (3.2), we have

IVo(t) = Uo@)llpe < Kz (0llao — allye

where Vo € L} (A).

loc
Next we fix some positive real number 6 and define for any a,: € A(n, §),

5(dye) = min {239, M } aye # Ay

and
Sane,0) = 276.
Next, we define the open balls
B(aye, 8(ay)) = {x € C/|x —ay| < 8}.

Then the family of open sets {B(a,z, 8(a,)), ay: € A(n, §)} covers the set

A(n, §).
By the compactness of A(n, &) let B(ayz, j, 8(ay ;)), j=0,1,2---mbea
finite open subcovering . We notice that the point a,¢ o belongs only to the set

B(aye,0, 8(aye0))-
Let P;(-), j = 0,1,2---m be aLipschitzian partition of unity subordinate to
the covering. We define the following intervals:

Io(aye) = [0, T Po(aye)]

and for j > 0,

Ii(ane) = [T (Polaye) + -+ Pj_1(ape)), T(Polaye) + - Pi(aye))].

Next we set
Vi@ =a+ fo > 1 ()Uo(a; )5)ds (3.3)
=0

and

t m

Wiane)(t) = ap +/0 Z X1(a,)($)(1, Uo(aj)($)§)ds. (34
j=0
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By Proposition (2.1), the map W, : A(yj, £) — wac(A)(n, &) is continuous. More-
over, since a,¢ o belongs only to the set B(ayz,0, 6(ane,0)), Polane,0) = 1 and there-
fore we have Ip(ays,0) = [0, T].Since x/,(4,. nUo(a;)(s) = 0, j # 0, wehave from
(3.3) and (3.4),

Y, (ao)(t) = ao + / Uo(ao)(s)ds
0
and

Wilayz,0)(1) = a0 +/0 (n, Uoao)(s)§)ds.

But by (3.2),

d
EW(ang,o)(f) - (n, Uo(ao)(f)é”)‘ =
That is

[(n, (Vo(r) — Uo(ao)(1))§)| =

holds for arbitrary n, § € DQE.
Hence,

Vo(t) = Up(ao)(®), t€[0,T].
Therefore by (3.1)
Yi(ao)(t) = Po(?)
and
Wilaye,0)(#) = Ppe 0(t) (3.5

Next we have by (3.2)

aw d
/ —Wilane)(s) — W(a,,g)(s) ds

/ Z X1y ()
=0

t m
/ ZXI (ang>K,,g(S)||ao ajllpeds < Dpe Mye(t) (3.6)

d
(. Uola)($)§) = —=Waye)(s)| ds

where

M (t) = /0 K ) (s)ds
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and

m m

D K@ =x) =1, I =|JIae=10,T1.

j=0 j=0
Lett € [0, T]befixedandlet j € {0,1,2---m} besuchthat? € I;(a,). Then by
the definition of Wy (a,e)(1),

d
d (Ewl(angxr), P, Y(a)(t))(n€)>

=d((n, Uo(a;)()E), P(t,Y (a)(1))(n, §))

< p(P@, Y(ap)0)n, &), P, Y(@)®)n, &)

< KLY @)(@0) = Y (@)®)|lpe

=K} (Dlla; — allye = K ()lay. j — ayel

<270K}) (3.7)

We remark here that inequality (3.7) holds since a,: € B(a,e, j, §(aye, ;)) for some
0<j=<mandl|ay — an, ;| < 8(ay,;) < 2736,
The estimate holds on the whole interval [0, T'] since it is independent of ;.
Similarly, we have for ¢ € I;(aye),

d
d (EWl(ang)(t), P&, V(@) f))

d
<d (EWI (ane)(@), P (2, Y (a)(®))(n, E))
+p (P, Y(a)t)(n, §), P, Yi(a)0)n,§))
< K5 (0270 + KDY (@)(t) = Y1(@)(@)]le
< KE(O[27°0 + Dye Mye(1)] (3.8)
Inequality (3.8) follows from the following estimates:

1Y (a)(®) = Yi(@)(Dllne = [W(ane)(t) — Wilane)(0)]

/
0

75 W@)(s) = (n, Uo(a)(s)§) | ds

t
5/ KE()ao — ajllye < DyeMye(1)
0

by (3.2)
In general, we claim that for n = 1, 2 - - -, we can define sequences of maps:
Y,: A— wac(A) and W, : A(n, &) — wac(A)(n, £) such that W, is continuous
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on A(n, &) and foreach a € A, ay: € A(n, &), Y,(a) lies in Lfoc(.A), Y. (ap) = Py
and Wn(ang’o) = (I),]g,().
Moreover,

(1) \/0 d W (aﬂf)(s) n ](Clng)(s) ds < Dné?
+o27 1[2 +ZM}
.. d -
w ¢ (EW"(G"E)(Z)’ P, Yn1(a@)(0))(n, E)) <627"K (1)
(iii) d (EWn(ang)(t), P(t,Y,(a)t))(n, é)) < DKL (1) ni

+627" K L) Z (ZM”E(”)

(iv) There exists maps R,z , : [0, T] — R, lying in LIOC([O, T'1) such that for
every € > 0, there exists § > 0, such that |a,] — ay¢| < 6 implies that

d d
‘ Waane)(t) = W, (@) (0)| < Ryg (XD,

for some subset E of [0, T'] with measure u(E) < €.

Our claim (i)—(iv) above hold for the case n = 1 from the definition of the maps Y
and W and by applying Proposition (2.1). Assume that the claim holds forn — 1,
we show that it holds for n as follows:

Choose U,,_1(a)(t)(n, &) € P(t, Y,_1(a)(®))(n, &) such that

‘Ewnl(ar/é)(t) — Up—1(a)(0)(n, S)‘

d
=d I:EWnl(a,,g)(l), P(t, Yy—1(a)®)(1, %)}

Mn l([)
(n—D!

As (n,&) — U,_1(a)(t)(n, &) is a sesquilinear form a}nd Y,—1(a) is adapted, then
there exists an adapted process U,_(a) : [0, T] — A such that

Unfl(a)(t)(n’ S) = (’7» (Unfl(a)(t))é)-

& @M (1))
< DKL (1) +027"KE(1) Z(; (;’ﬂ 3.9)
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1
loc

By inequality (3.9) and the assumption that Y, (a) liesin L (A), then the process

U,—1(a) € L} .(A) foreacha € A.
By (iv) of the recursive hypothesis, there exists §, > 0 such that |a;}E —ayel <
8, implies

d d
‘_Wnl(a;g)(t) - Eanl(ané)(f) < Ryen—1(Oxe@) (3.10)

dt
for some E C [0, T'] satisfying

/ Ryen1(t)dt < 62773, (3.11)
E
Next we define for any a € A, a,e € A(n, §)

. _n—3 lage — ays ol
aii(aﬂf) = min {ans 627" 3’ % > Ang # ang,0

and
8n(@ye.0) = min{s,, 627"}

We cover the set A(n, &) with the balls B(aye, 6,(a,:)) and let B(a;’é’j,

8,,(a7’7’5’j)), j=0,1,2-.-m,,beafinite subcover, where we have put a:;g,o = a0

We remark that by the inequality
1
”’_Z&j _"’_Zé,j
|ane.o —a |>2|aso ae ;]

the point a,¢ o belongs only to the ball B(ayg o, 8,(ane 0)). Let {P}’(~)}§zgl” be a
continuous partition of unity subordinate to this covering and define the following
intervals:

I (aye) = [0, T P (ane)]
and for j > 0,
I (aye) = [T(P§(an)+-+ P,’-’,l(ang)), T(Po(aye) +---+ P} (ane))]-
Define the maps Y,,, W), as follows:

t My

Y,(a)t) =a+ / > X1 ()Un-1 (a]) (s)ds (3.12)
0

=0

t mpy

Wi (ane )X0) = aye + fo > K@), Uy (a2) )E)ds — (3.13)
j=0

Since Y,,—1(ag) = Py and by the properties of the process U,_;(a) and the
fact that Iy (ays,,) = [0, T], we have

Y,(ap) = dg
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and by Proposition (2.1), themap W,, : A(n, §) — wac(A)(n, €) given by (3.12) is
continuous and W, (a,¢,0) = P,z 0. Furthermore, we have the following estimates:

[

! d
< /0 S Xt | 00, U1 (@) (5)6) = =Wy (@ne)s)
J

d d
ds Wn(anf)(s) ds n l(anf)(s) ds

ds

ds

! d
ffo D gt ®) | Ut (@) (9)8) = 2 Waoa (ae ;) (5)
J

ds

t d d
+/(; ;XI;”(‘IUE)(S) %W ( r]§ j) (S) ds n 1(61,75)(5‘)

S/(; (ZXI;((;,,E)(S))[ néKng(t)
7

+ /O (Z X1 ae (s)) Ryen—1(8)XE(s)ds
J

(2M ns )

n 1

t) + 027K )Z LM”N)) ]

<Dy +92773,

Hence, item (i) of the recursive hypothesis holds for all n. Next we fix t € [0, T']
and let j be such that ¢ € I;(aye). Then by (3.11) and (3.12),

d
d (Ewn(a,ﬁ)(t), P(t, Y, (@)0))(, s>)

=d ((n. Un-1@)(®)§), P(t.Y,-1(@)()(n, £))
< p (P(t, Yarr@))0)(n, &), P(t, Yn_1(@)(O)(n, §))
< K O1Yam1@))0) = Yoo @)l e (3.14)

By applying (3.10), we have
1Yn-1(aj)(t) — Yn—l(a)(f)llnz,:
d
= |a'1§] e + |_ n—1 ( ngj)(s) W, — l(ané)(s)lds

<0273 4 92—"—3 =922 (3.15)
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Combining inequalities (3.13) and (3.14), we have

d
d (Ewn(ang)a), P(t,Y,_1(a)())(, s)) <627 K ;L (0).

The estimate is independent of j and so it holds on the whole interval [0, T']. This
proves item (ii) of our claim. To establish item (iii) we proceed as follows:

d
d <EWn(an§)(f), P(t, Ya(@) o), s>)

d
<d (Ewmng)(z), P(t, Y1 (a)(t))n, s))
+p (P(t, Y1 (@) )1, &), P(t, V(@) (t))(n, §))
< 27K () 4 KO Yao1(@)(®) — Ya(@)(D)lpe

<027"KL() + K]

d
Wa—1(aye)(s) — W (ane)(s)| ds

M (1) 2M e (t
<KL [92—" 24 Dy —L 027" ‘Z( 5( Y 4 go-ra :

by (i) and (ii)

M (1) Ly QMg (1))
E —n— é
< DK (1) 2! +62 'K%(t)ziz_’! ,

(obtained by applying the inequality; 627"~2 4+ 9273 < 27"1),

The last estimate proves item (iii) of our claim. Item (iv) of the claim is
established by the application of Proposition (2.1) to the map W, : A(n, §) —
wac(A)(n, §).

From item (i), we have
|Yn(a) n I(a)lné

d
—(n, Y (a)(®)§)

T
= 1¥,(@)(0) = Yo @Ol + / -

d
=, 0 Yaor(@)(@0)E) | dt

T
W@ )(0) — Wo s (ane)O)] + /
0
M:;E(T)
n’

d d
EWn(anE)(s) - EWn—l(ané)(s) ds

< Dy + 927" 2Mue(D

(3.16)
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It follows by (3.15) that the sequence {Y,(a)} is uniformly Cauchy in wac(.A)
and thus converges uniformly to a map ® : A — wac(A). Again,

lim W(@,e)() = lim (1, Y,(@(0)§) = (1, D@)(1)§)

The map a,: — (n, ®(a)(?)&) is continuous since the map a,; — W,(a,¢) is con-
tinuous for each n.

As the stochastic process ®(a) is the limit of a sequence of adapted weakly
absolutely continuous processes in LlloC (A), ®(a) lies in Ad(A)yae L }DC.(A) and
CD(CZ()) = (b().

By (iii) of the recursive formula,

d
d (g(n, D(a))§), P(t, P(a)®))(®, S)) =0.
Therefore

®(a) € SD(a), (n, ©(@)()E) € ST(a)n, &), (n, P(a)(E) = Dyeo. O

The following corollaries show that the set-map S M(a)(n, &) and the set of
complex numbers RD(a)(n, &) associated with the reachable set of QSDI (1.1) at
the final time 7 admit some continuous parameterizations.

Corollary 3.2. There exists a subspace U of the space of all continuous maps
from A(n, &) into wac(A)(n, &) and a continuous function

g1 A, &) x U — wac(A), §)
such that for any a € A, ay: € A(n, &),

gane, U) = SO, &).

Proof: We remark first that the space wac(A)(, &) is a subspace of the space
ACIO0, T] of all absolutely continuous complex valued functions on [0, T'], a sep-
arable Banach space with the usual sup norm.

We put X to be the set of continuous maps from the compact set A(n, &) into
wac(/i)(n, &) and define the subspace U/ of X by

U={W:A®@, &) — wac(A)(n, &)W iscontinuous and Wiay) € SD(a)
(0, &)}

the set of all continuous selections from the map a,: — S D)y, &).
Define the map g by

glans, W) = Wiaye).
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Then by the continuity of each W € U, g is continuous and by Theorem 3.1 above,

glaye, U) = ST, §). .

Corollary 3.3. T~h6re exists a subset U of the space of all continuous maps from
A(n, &) into wac(A)(n, &) and a continuous function
h:An, &) xU — C
such that for any a € A, aye € A(, &)
h(aye, U) = R(a)(n, £).
Proof: Adopting the notation employed in the proof of Corollary 3.2, we define
the map & by
h(ape, W) = W(ane )(T).
Since
W(aye) € S (@), £),
then W (ay¢)(-) is of the form
W (ane)() = (1, W(-)§)
for some W € ST (a). Hence, we have
W (aye)(T) = (n. W(T)§) € RD(a)(n. §).
By Theorem 3.1, it follows that
h(aye, U) = RD(@)(n, §). D
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ABSTRACT. We establish further results concerning the existence and non-uniqueness of solu-
tions of quantum stochastic differential inclusions in the framework of Hudson and Parthasarathy
formulation of quantum stochastic calculus. Our results are established by considering a general Lip-
schitz condition on the coefficients of the inclusion. We present examples of continuous multivalued

maps satisfying the general Lipschitz condition in the sense of this paper.
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1. INTRODUCTION

Some very important preoccupations of classical analysis are the numerical and
analytical characterizations of solutions of classical differential inclusions defined in
finite dimensional Euclidean spaces. Indeed the existence and non uniqueness of
solutions of such inclusions have been thoroughly investigated (see, for example, [1,
11, 13, 16]). Indeed, many features of reachable sets, the solution sets and their

selection theorems have been studied to a great extent [6, 7, 11, 13, 15, 16].

However, in the non commutative quantum setting, the situation is different.
The analysis of quantum stochastic differential inclusions (QSDI) concerns quantum
stochastic processes as solutions that live in certain infinite dimensional locally convex
spaces. In addition, there are several locally convex operator topologies that may be
defined on the space of such processes arising from several theories of noncommutative
stochastic integration. There are several variants of topological conditions depending
on the underlying properties of the locally convex spaces of the integrands that may
be required of the coefficients of the quantum stochastic differential inclusions. The

objective of this paper is to further investigate the existence and non-uniqueness of
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solutions of quantum stochastic differential inclusions of the form:

11 X()eXo+ /0 (E(s, X(s))d As (s) + F(s, X (s))dA(s)
+ G(s, X (s))dA; (s) +H(s,X(s))ds), te[0,T],

under a Lipschitz condition that generalizes similar condition employed in [8]. In
the framework of the Hudson and Parthasarathy [12, 14] formulation of quantum
stochastic calculus, we consider a more general class of Lipschitzian coefficients F,
F, G, H appearing in (1.1). The Lipschiz condition in [8] is a special case of the
present formulation. The integral in (1.1) is understood in the sense of Hudson and
Parthasarathy [12] and the maps f, g, m belong to appropriate function spaces as
described in [8]. The integrator processes A, A;{, A, are the gauge, creation and
annihilation processes associated with the basic field operators of quantum field the-
ory. In [8], under the Lipschitz condition of that paper, the existence of solutions
and the equivalent form of QSDI (1.1) have been established. We establish a wider
class of Lipschitzian QSDI (1.1) to cover some important multivalued maps that are
Lipschitzian in the general sense of this paper. This class of maps was not covered
by the notion of Lipschitz maps due to [8]. In particular, we present a class of Lip-
schitzian multivalued maps associated with the space of continuous endomorphisms
of the locally convex space of our quantum stochastic processes as an important ex-
ample of multivalued maps satisfying the Lipschitz condition in our sense. This work
therefore extends the class of QSDI investigated in [2, 3, 4, 5, 8]. We remark that
a very strong motivation for studying QSDI (1.1) among others, concerns the need
for sufficient information and knowledge about the dynamics and fluctuations of the
systems described by discontinuous quantum stochastic differential equations which
may be reformulated as regularized QSDI. QSDI of the form (1.1) plays a central role

in quantum stochastic control theory and quantum dynamical systems (see [3, 4, 8]).

The rest of the paper is organized as follows: We present in Section 2, the descrip-
tion of some very important relevant spaces, some fundamental assumptions and some
results. Our main results concerning the existence, and non-uniqueness of solutions
of QSDI (1.1) are established in Section 3.

2. PRELIMINARY RESULTS AND ASSUMPTIONS

Our framework in this paper relies largely on the formulation in [8, 9, 10]. De-
tailed definitions of various spaces that appear below can be found in [8]. In what
follows, v is a fixed Hilbert space, D) is an inner product space with R as its com-
pletion, and I'(L2(RR.)) is the Boson Fock Space determined by the function space
L?/(]RJF). The set E is the subset of the Fock space generated by the exponential
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vectors. If ' is a topological space, then we denote by clos(N') (resp. comp(N)), the
family of all nonempty closed subsets of N (resp. compact members of clos(N)).

In our formulations, quantum stochastic processes are A-valued maps on [0, T7.

The space A is the completion of the linear space
A= Li(DSE, R @ T(Z2(R.)))

endowed with the locally convex operator topology generated by the family of semi-
norms {z — ||z||,e = |(n,2€)], n,§{ € D ® E}. Here, A consists of linear operators
from D ® E into R @ I'(L2(R,.)) with the property that the domain of the operator
adjoint contains D ® E. We adopt the notation and the definitions of Hausdorff
topology on clos(A) as explained in [8, 9, 10].

For any pair of 7, € D @ E such that n = c® e(a),§ =d®e(f), a,f € L2(R,),
we shall in what follows, employ the equivalent form of (1.1) established in [8] and

given by the nonclassical ordinary differential inclusion:

n X(10€) € P(X(0)(1.6),

(2.1) X(0) =Xy, te]0,T].
The multivalued map P appearing in (2.1) is of the form
P(t, x)(n,€) = (0, Pap(t, 2)E)
where the map P.s : [0,7] x A — 24 is given by
P.s(t,x) = pap(t)E(t,x) + v5(t)F(t, x) + 0, (t)G(t, ) + H(t, ).
The complex valued functions piag, Vg, 04 : [0,7] — C are defined by
paplt) = (al8), T8}, va(t) = (£, B(E)

oo (t) = (a(t),g(t)),, t €10,T]
for all (t,z) € [0, T]x A and the coefficients F, F, G, H belong to the space L?.([0, T] x

loc

A) s of multivalued stochastic processes with closed values.

As explained in [8], the map P cannot in general be written in the form:

P(t,x)(n, &) = P(t, <n,x§ >)
for some complex valued multifunction defined on [0,7] x C, for t € [0,T], x € A,
1, ¢ € DIE.

Definition 2.1. (a) Let Fin[A] denote the family of all finite subsets of a nonempty
set A. For z € A, and O € Fin[(D®E)?], define ||x||e by

2.2 Tlle = max ||x||,e.
(2.2 el = mas el

Then, the set {|| - ||o : © € Fin[(DQE)?]} is a family of seminorms on .A. We denote
by 7 the topology generated by this family of seminorms and we let A’ represents the
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completion of the topological space (A, 7).
(b) Let I = [0,7] € Ry. A multivalued map ® : I x A — clos(A) will be called
Lipschitzian if for any pair (n,£) € (DQE)?, the map satisfies an estimate of the type

(2.3) pue (2(t,2), D(t,y)) < Kpe(t)ll2 — yllogme

for all 7,y € A and almost all ¢ € I and where K% : I — (0,00) lies in L{,.(I) and

O is a map from (DXE)? into Fin[(DRQE)?|. Similar definition holds for a map of
the form @ : I x A — clos(C) where the Hausdorff metric p(-,-) on clos(C) replaces
the pseudo metric pye(-,-) on clos(A) (see [8]).

Remark. In [8], the map (n,£) — Os(n,&) that appears in (2.3) is just the identity
map. Let L(A) denote the linear space of all continuous endomorphisms of A. Then
the above definition enables us to exhibit a class of Lipschitzian multivalued maps
which are continuous from the space R, X A to the Hausdorff topological space

(clos(.[l), TH). The multivalued maps in this class are not Lipschitzian in the sense
of [8].
Theorem 2.2. Let A : R, — L(A) be a single valued map on R,. For arbitrary
n,& € DRE and a fixed closed ball S € comp(A) with centre at the origin, define for
any = € A,

F(t, ) = [|A(t)x|pe S
Then the map (¢,x) — F(t,x) is Lipschitzian.

Proof: For z, y € A, t € R, we employ some basic results similar to Lemma (I1.1.5)
and Corollary (II.1.2) in [13] as follows:

pog (F'(t,x), F(t,y)) = pye (|AE)]lne S, [A)ylneS)
<A@z (lne — IA@)Y[lel pne (S, {0})
< [A@®)z — A@®)yllnepne (S, {0})
= [|A®)(z — y)lnepne (S.{0})
< S 1leCre@lx = yllowme
= Kpe(Wllz = ylloame,
where [[S|lye = pe (5,{0}), Kye(t) = [|S]lneCre(t), ©4 is a map from (DRE)? into

Fin(DEE)* and C/¢(t) is a positive function depending on the map A(t) and elements
n,¢ € DRE.

The continuity of the multivalued map (¢t,x) — F(t,z) follows from the last
inequality:.

Remark. (a) Since O is a finite set, we see that |z||e = ||z||,y¢, for some (7,¢') € ©.
Thus, in what follows, we employ in the proof of our main results the fact that a map
® : I xA— clos(A) is Lipschitzian if given any (1, ) € (DRIE)?, there corresponds
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(', &) € (DRE)? such that

(2.4) puc(@(t, @), @(t,y)) < Kpe(t)llx =yl e

for all z,y € Aand t € I.

(b) By the definition of the map (¢,z) — P(t,z)(n, ) that appears in (2.1), and by
the remark above, it is straightforward to show that if the coefficients of (1.1) are
Lipschitzian in the sense of (2.4), then the complex valued multifunction (t,z) —
P(t,z)(n, &) is also Lipschitzian. That is, there exists (1//,¢’) € (D®E)? such that for
all x,y € A,

(2.5) p(P(t,x)(n,€), P(t,y)(n,€)) < Kye(t)llz =yl e

where the map K; : [0, 7] — Ry lies in L, ([0, T) and p(-, -) is the Hausdorf distance

loc
function on clos(C).

(¢) Using the definition in (a), we see that if P : R, — comp(A) such that P(t) is a
closed ball with centre at the origin and (n/,¢’) € (DQE)? is a fixed point, then the

multivalued map F' defined by

F(t,z) =|(n,28)| P(t)

is Lipschitzian. This follows, since for any t € R, z,y, € fl,

pre(F(t, ), F(t,y)) = poe (7', 28" P(1), (n, y€') (1))
< [lzllwe = lyllwe lone (P(),{0}) < [[P@)]lnellz = yllye,

where

1Pl = poe(P(1),{03).
3. EXISTENCE AND NON UNIQUENESS OF SOLUTIONS

Subject to the conditions below, we shall establish the existence and non-unique-
ness of solutions of QSDI (1.1) in this section. By a solution of (1.1) we mean a
quantum stochastic process ® : [0,7] — A lying in Ad(A)wae (L2, (A) satisfying
QSDI (1.1).

In what follows, we consider, without loss of generality, quantum stochastic pro-
cesses and the related inclusions defined on the interval [0, 1]. We employ the notion
of adaptedness of quantum stochastic processes as explained in [8]. In connection
with the subsequent results, we list the following statements and assumptions.

(Swy) Z :0,1] — A is a stochastic process in Ad(A),q with the property that for
each pair 7, £ € D®E, and almost all ¢ € [0, 1], there exists a positive function W, (t)
lying in L} ([0, 1]) such that

loc

(G50 200, P Z0)0.9) < W)
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(Si2)) v > 0 is an arbitrary but fixed number and @z, is the set
Qzy ={(t:2) € [0,1] x A+ ||z = Z(t)||c <7, V1. € € DIE},

(S)) Each of the coefficients £, I, G, H appearing in (1.1) is Lipschitzian from @z,

to the Hausdorf topological space (clos(A), Ty), i.e, for each M € {E, F,G, H} there

1

exists a positive map K/ : [0, 1] — R, lying in Lj,,

7, & such that

([0,1]) corresponding to each pair

pue (M (t,2), M(t,y)) < Kyl (®)]lz = yllonme
for some map
Oy : (DRE)? — Fin[(DRE)?].
(S1)) For each pair 7, ¢ € DQE,
e = |lwo — Z(0) ][5  and  dpe <.

(Ss)
Rye :=max(0pe, W)
for all n,§ € DQE where

Wye = esssup We(t).
[0,1]

(S(6)) For any countably infinite sequence of points {(7,,&,) € (DRQE)*,n=1,2,...},

sup {ess sup K,l;gn(t)} < 0.

neN te0,1]

(Ser)) {Lnje, Yj=1 s a sequence of positive real numbers indexed by a countably infinite
sequence of elements {(1;,£;)}52, C (DQE)? that depends on an arbitrary pair (1,§) €
D®E and defined as follows:

Lm& = Rm&
and

Ly, = ess?ulc})K,ggj(t), J=2
0,1

(Ss)) From (S(7)) above, we set
Logn =, max {Ly¢} and Lyc =sup{Lygn}.

2.0,

(S(9)) For arbitrary n,£ € DQE and t € [0, 1], we define

t
gﬁf(t) = 2L77§ + 2Ln§A (K,J;S(S)EL%S) dS,

where the constant L, is given by S(s) above.
(Saoy) J is the subset of the interval [0, 1] defined by

J={te€0,1]: Ex(t) <, Vn,& € DRE}.
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Next we present a proposition which is useful for the proof of the existence result
that follows.

Proposition 3.1. Let {®;}3°, be a sequence of weakly absolutely continuous maps
from [0, 1] to A which satisfy the following conditions:

(i) (t,®i(t)) € Qzn, i > 1, for almost all t € J.

(i) There exists a sequence {V;}52; such that for arbitrary 7, € DRQE and a constant
L, >0,

(a) ®;(t) = Xo+ [, Viea(s)ds, i>1

(b) |4:(n, ®:(£)€) — 4(n, i1 (1))] < 2L KK (8) for almost all ¢ € J. Then,
() [1Di(t) — Dimy(t)]lne < 2Lye fy KL (s) <va5 ds,teJ,i>2.

Proof. Let (i) and (ii) hold. Then

1900) = @ia(Olhe = [ {0 (ics(5) = Vioal)e)asl by o
1 [ 00600 — i)l by )
< [t - dim, Bos ()0l
< 2L 1/ Kle(s) Z_2 T ds
_-QL%Q/)Riz ﬁéﬁff;id& teJ, i>2, by (ii)(b).

This concludes the proof.

Next, we present our result on the existence of solution of QSDI (1.1) subject to
the conditions (S1)) — (Suo)) above. The result shall be established by employing a
similar line of argument as in the proof of Theorem (8.2) in [8].

Theorem 3.2. Suppose that the conditions Sy — S10) hold and the coefficients
E,F,G, H are continuous from [0,1] x A to (CZOS(A),TH).
Then there exists a solution ® of (1.1) such that

(3.1) [P(t) = Z()[lne < Ee(t), t €,
and

d d P Lyet
(32) 2, ®(0)€) — =1, Z(E) < L (14 2K (B)ebr)

Proof. In what follows, 1, ¢ € DQE are arbitrary elements. Our proof will be estab-
lished by constructing a Cauchy sequence {®,,},>0 in A of successive approximations
of ® in such a way that the sequence {<(n, ®,(t)¢)} is also Cauchy in the field of
complex numbers.
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Define ®¢(t) = Z, then ®q is adapted. By Theorem (1.14.2) in [1] (See also [8]),
there exists a measurable selection Vi(-)(n,€) € P(-, ®o(+))(n, &) such that

Vo(t)(n, €) — <77, Bo(2)€)]

(3.3 = (50 2ul0), P R0)(0.9) ) < W)

As the map (n,&) — Vo(t)(n, &) is a sesquilinear form on D®E, for almost all ¢ € J,
then there exists Vo(t) € A such that Vy(t)(n, &) = (n, Vo(t)E). Since Vi(-)(n, ) is

locally absolutely integrable, then V; € L}, (A).

Next we define

t
O, () = Xo + / Vo(s)ds, teJ.
0

As Vi(t) € A for almost all ¢ € J, it follows that ®,(t) € A, i.e ®; is adapted.
Furthermore, for ¢t € J,

I920) = ot < 1% = oliolo + [ 166)00) = Ao 0u(5)9ds

(34) S (5775 +/ an(s)ds
0
Notice that by (3.3),
d d
L, 2(006) — i @0(1)9)] < Wiclt).
Again there exists a measurable selection V;(-)(n,&) € P(-, ®1(+))(n, ) such that

V006~ g0 2a08)] = (2108, P20

< p(P(t, Po(t)) (1, 5) P(t, ®1(1))(n,€))
< Kpe@)l@o(t) = 21(8) ey

(36) < KP ( méi / Wmfl ) )

for some 71,&; € DRE that depend on 7, €.

(3.5) |

By a similar argument as for the existence of Vj(-), there exists V; € L. (A) such
that for almost all t € J,

Vit)(n, €) = (n, Va(t)S).

Next we define,
t
Dy(t) = Xo —i—/ Vi(s)ds, teJ.
0
Again, ®,(t) € A, since Vi(t) € A for almost all t € J, i.e. ®, is adapted.

Furthermore, for ¢t € J,

19206 = 0alac = | | 0405) = Vo) dslg
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- | / s (Vils) — Va(s)) €)dsi
< / [0, VA()6) — (. Vi(s)€) ds
< [ o (Pl )0 8). Pl 2o 0:6)) s
/ K2()[@1(s) = Bo(8)]l e, ds

By applying (3.4), we have the estimate

B - n@le< [ (8506 o+ [ W r1ar] ) as.

We may write (3.6) as

B8 50009 - 50000 < KL (b + [ Woa(riar).

Continuing the procedure, there exists a measurable selection V5(-)(n,€) €
P(-, ®5(-))(n,€) and a pair of elements 79, & € DRE depending on 7, ¢ such that

VO €) — 53 (1 02(06)] = (502208 P 220)(0:))

< p (Pt ®1(2)) (0, ), P(t, ®2(1))(n,€))
< Kpe()]|@1(t) = @o(t) [l nge

(3.9) < KJ(t) /Ot <K,7252 [m& / W (7 Dd,

on account of (3.7).

Again, (3.9) may be written as

d

y
L 0. 930)6) — L0, 02(0)0)
(3.10) Ao / P (s)ds + KLt / P (s) /0 Wi, (r)dr ds

As before, it is straightforward to show that there exist Vs, Vo € Ll (A) defining
adapted processes @3, &, for t € J by

t
Oy (t) :X0+/ Va(s)ds, t € J
0

(3.11) Ou(t) = Xo + /t Va(s)ds, t € J
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and satisfy the following inequalities

[Ps(2) — Do (t)]|ng

Omer +/ Wie (r)dr] dsi) ds
0

t s
= [ K [ s as'as

t s s’
(3.12) —I—/O K,];(s)/o Kl e ( ')/0 We, (r)dr ds'ds.

and

[@a(t) — Ps(t)|lne

/ KP / 77353 / 577151[(7];52( /’)dsllds,ds
(313) / Knpg / 17353 / 772§2 //)/0 Wm& (T)drdsudslds.

Furthermore

d d
0. 81(06) — Sn. (0 < KO [ KL ) [ G K (s

(3.14) + Ke(t / e (s / be(s) / Wie, (r)drds'ds
so that from (3.13) and (3.14)

H(I)4<) (I)?’ ||’7§ /K / 773§3/ mé1 17252d8”d8,d8
/ K7172 / 77353/ 77252/ ngldT‘ ds"ds'ds

3 P
and

I Ba(0)6) — -l (1))

t s
= K7]73§(t) {577151[’77262[/77353/ / ds'ds

+W771§1L772£2L773£3/ // drdS,dS]

t
= qug( ) |:577151L77252L77353 9 + Wm& L172§2L173§3 6]
t2 3

t2
(3.15) < Kl (t) {Li’;&3 5 +Ln§36} < 2K};(t)L§7£§, t €10,1].



QUANTUM STOCHASTIC DIFFERENTIAL INCLUSIONS 497
Indeed, there exists a sequence {®;};>¢ of weakly absolutely continuous processes
from [0, 1] to A satisfying the hypothesis (i) and (ii) of Proposition (3.1) and hence
its conclusion.

To prove this claim, we assume that the sequence {®;} has already been defined
and satisfies the hypothesis (i) and (ii) of the proposition fori = 0,1,2...,n. We shall
show that there exists a map ®,,, : J — A for which (i) and (ii) of the proposition
also hold.

Again by Theorem (1.14.2) in [1], there exists

Va(-)(0,€) € P, @u(-)) (1, €)

such that

08006~ (0091 = d (0. 2,(08), PE20)01.6) ) ac on S

As (n,&) — V,(t)(n, &) is a sesquilinear form on DRE, for almost all ¢ € J, there exist
V, € LL_(A) such that
V() (0, &) = (n, V,(¢)€), a.eon J
Define t
D, 11(t) = Xo +/ Vo(s)ds, t € J.
0

Then, for some pair of elements n,, &, € DXE depending on 7, £, we have the

following estimates:

20 Ba(1)E) — o, (D] = {0, Vo) — (0, Ve 2 ()6
< p(P(1, @) (1., P By (1)(0,)
< KEW20(8) = 001 (1),
{2% / KP ¢ (s) 7;75_5)2)2@
< 2LP K (t )m

which proves (ii)(b) of Proposition (3.1).
Furthermore, for t € J,

[Prs1(E) = Po(E)llne < 1P1(E) = Po(t)llng + [[P2(t) = P1(t)lne
+ o ([ Pnga () — ()l

<« [ oo (Lyes)®
< 2Ly + 2Ly Y | /0 Ke(s)—=1—ds
k=0 ’

t
(3.16) < 2L,7§ (1 -l—/o K%(S)eLnssds) <.
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This shows that (¢, ®,41(t)) € @z~ and therefore proves (ii)(c) of Proposition 3.1. It
follows that the sequence {®,(t)} is a 7,-Cauchy sequence and therefore converges to
some ®(t) € A. We conclude that ®(t) is a solution of (1.1) for almost all t € J in

the same way as in the proof of Theorem 8.2 in [§].

Finally, by using (ii)(b) of Proposition 3.1, we have the following:

d d d d
|%<7Ia P 11(t)§) — EW Do (t)6)] < |%<7L Py(t)¢) — EW Do(t)8)]
n—1 I k
+ kz 2LnaK,§Z(t)[ }ff] < Lye + 2L K (t)eboet.
=0

Taking the limit as n — oo, we obtain inequality (3.2). Similarly, inequality (3.1)

follows from (3.16) above.

Corollary 3.3. Suppose that the conditions S(1) — S0y hold in the region
QX07'Y = {(t,l’) € [Oa 1] X A : ||I - XOHUE < 7}a

then the solution X (¢) of (1.1) exists on the segment.
Proof. The conditions of Theorem (3.2) will be satisfied if we set Z(t) = X, a

trivially adapted quasi solution, and the function

is continuous, by the continuity of the map (¢,z) — P(t,x)(n,£).

Our next result shows that new solutions of QSDI (1.1) exist in some neighbour-
hoods of a solution. This establishes the nonuniqueness of solutions as in the case of

Lipschitz differential inclusions in finite dimensional Euclidean spaces (see [1]).

Theorem 3.4. Let ®((t) be a solution of problem (1.1). Suppose that in the region
Qay ¢y, the conditions of Theorem (3.2) are satisfied with Lipschitz constant ¢ that

depends only on arbitrary elements 7, ¢ € DQE, for some constant ey > 0.

Then for any
(3.17) € > 2L + 2K ¢ (et — 1)
valid for all , £ € D®E, a solution ®(¢) of QSDI (1.1) exists such that
|D(t) = Po(t)[lne <€, on [0,1],

Suppose in addition that the map ¢ — %(77, Dy (t)€) is continuous on the interval [0, 1],
then there exists a constant M,¢ > 0 depending on 7, § such that

d
(3.18) |£<n,<1>(t)£)| < M,¢, almost all ¢ € [0,1].

Proof. We employ an adaptation of the argument in the proof of Theorem 2 in [11]

as follows:
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We consider the region (g, for €y big enough such that 0 < € < ¢ in view of
the constraint (3.17). By the continuity of the map (¢,2) — d (0, P(t,z)(n,&)) on the
region Qg, ,, we have

sup (0, P(t,)(n, ) = Se < .
qu €0

Define the number
2¢

A, —
e — 2Ly — 2K e(elne — 1)

Then in view of (3.17), A, > 0. Thus, by a similar reason as in [11], we can find

numbers b > K,¢e, b > S,¢ such that

3.19 Oy (t)E)|dt < —
(319) [ 15 onwele < -

where

2 wr] > 0}

By the argument in the proof of Theorem 3.2, since ®q(¢) is a solution of (1.1), there
exists an element V, € L}, (A) such that

Do(t) = Xo + /t Vo(s)ds

B={te|0,1]:

and

%(n, Du(t)E) = (n, Vo(t)€), almost all ¢ € [0, 1].

Next we define
V() =Vo(t), t € ([0,1]\B)
=0, t € B.
and ,
Y (t) = X —i—/ V(s)ds.

0

We note here that the process Y lies in Ad(.[l)wac.
For t € ([0, 1]\ B),

my@QZWX@+AWM@&k=m%@Q

Fort € B,

Therefore we have for both cases using (3.19)
(0, Y (£)8) — (0, @o(D)E)| = [[Y () — Po(t) e < A
"

and

(Y00, PLYEN0.6)) = Wielo)
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almost everywhere on [0, 1].

Furthermore,
(3.20) Wie(t) < Spe < b, for t e B,

For t € ([0, 1]\ B), we have
d

L Y(0€) = % tn, Bol0)) € Pt Bo(0)(0,)
Thus
d
21 W) =d (0. B0 PEYO)0)) =0 < Koge

Hence by Theorem 3.2, there exists a solution ® of (1.1) satisfying
1) =Y (@)llne < Ene(t), t € J,

and where &(t) is given by S().
By the definition of the set B C [0, 1], and the estimate (3.19) above, we have

(3.22) /bds < / |—(n, Po(s)€)|ds < A—

n¢
By (3.19), (3.22) and S(g), we have,

t
gng(t) < / Sngds —+ 2L775 -+ 2L,7§/ (KngeLnfs) dS
B
< = 2L + 2K (b0 — 1),
Anf

Hence, we have

[@(t) = Po(t)[lne < [ 9(8) = Y (E)[lne + [[Y' () — Polt)lne
< j—E + 2L77§ + 2Kn§(6L"5 — 1) =€

U3
Again by Equation (3.2), ®(t) satisfies
d d
|20, 2(0E) = — (0. Y (DE)] < Lyg(1 + 2K ee™")
(323) < Lng(l + QKnEUnﬁ) = N77§7
where

Uye = sup (e"nh).
te(0,1]

Thus by definition, <% (n, Y (t)¢) = 0 for t € B and for ¢ € ([0, 1]\B),

d d
S0, Y (1) = 201, Bo(0)).
Putting

d
SUP| (n, @o(t)€)] = Ty,



QUANTUM STOCHASTIC DIFFERENTIAL INCLUSIONS 501

then from (3.23)

d
|%<na¢(t)€>|§an’ t€B>

and p
|5 @O < Toe + Nug, ¢ € ([0, 1\B).
Inequality (3.18) follows by defining
Mye = Tye + Ny
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Abstract. The contributions of Professor G.O.S. Ekhaguere between 1976 and 2017 can broadly be
classified into 4 groups as follows: (a) contributions to mathematical physics, (b) contributions to non-
commutative stochastic analysis, (c¢) contributions to x-algebras and (d) contributions to mathematical
finance. All the contributions are significant, breaking new grounds at the frontiers, lead to new enquiries,
questions and applications to physical problems. The groups are not mutually exclusive. Results in some
of the groups are often applied or employed in other groups.
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1. Contribution to Mathematical Physics

(a) In 1977, Professor G.O.S. Ekhaguere (GOSE, hereinafter) worked on the Markov properties
of stochastic processes due to Nelson and Wong. The study furnished important applications to
Mathematics and Physics problems. Further details can be found in Journal of Mathematical
Physics, 18(1977)2104-2107 and reviewed by T. Neabrunn for the AMS published MR.

(b) In 1978, GOSE did not only develop the theory of superselection rules, but also estab-
lished a wide class of inequivalent irreducible *-representations of the canonical commutations
relations of the electromagnetic field. He employed the method of C*-algebra for the representation.
These contributions were published in J. Mathematical Physics, Volume 19,1751-1757 2,
reviewed for the MR by Y. Kato.

He Continued his study of superselection rules in J. Mathematical Physics, 25 (1984), 678-
683 and characterized a subclass of the x-representation consisting of positive x-representation. He
exhibited new superselection sectors.

1.1 Gaussian fields of Markov types

In 1979, GOSE established necessary and sufficient conditions for a class of Guassian generalized
field to have a Markov property. He showed that Wong’s notion of Markov property is weaker than
that of Nelson in certain cases. More so, he showed that his results have applications to quantum
field theory by employing the theory of Markovian generalized stochastic fields. These eesults were
published in Physics A 99(3) 545-568 1979, reviewed by Koichiro Matsuno for the MR.

Furthermore he established a theorem in the same year 1979, that new Markov fields may be
obtained from old ones by the use of multiplicative measurable operators. He employed the Gudder-
Marchand formulation of noncommutative integration. Results were published in J. Maths Physic.
20(8) 1679-1683 (1979), reviewed by Paul Benioff for the MR.

In 1980, GOSE established a characterization of Markovian homogenous multicomponent Gaussian
fields. He gave a necessary and sufficient condition for Markov property. Results were published in
Communications in Maths Physics, 63-77 (1980).

In 1982, GOSE formulated a noncommutative stochastic process over complete locally convex
x-algebra and discussed quantum fields as examples. The results were published in J. Physics A
15(11) 3453-3463 and reviewed by H. Araki for the MR.

Trans. of the Nigerian Association of Mathematical Physics, Vol. 6 (Jan., 2018) 1
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1.2 Central limit theorems

In 1985, GOSE established some central limit theorems in probability space. He extended the results
of Urbanik to the case where the random variables are densely defined self adjoint linear operators
on a separable Hilbert space. A 50 page-long contribution was published in Publications Research
Institute Maths Science (1985) V21(3) 541-591.

2. Contributions to non-commutative stochastic analysis

(a) In 1982, GOSE made a very significant contribution to the theory of non-commutative
stochastic integration. He developed stochastic integration with respect to certain Martingales
of non-commuting measurable operators and showed by some calculations that his formulation
extends the classical Ito integration. The results were published in J. Nigerian Maths Society
Vol 1 (1982), 11-23.

(b) In 1985, GOSE reformulated some results of Hudson and Patasarathy in the language of
Op*-algebra. He established a notion of differentiability within the context of the algebra. Then he
established a chain rule for stochastic differentials of suitable integrands. Results were published in
Lecture Notes in Physics 262, Springer, 1986 and reviewed by David Applebaum.

GOSE also established the existence and some properties of solutions of quantum integral
equations in COMO, 1985, 453-455.

(¢c) In 1990, GOSE established a major and complicated theorem on the functional Ito for-
mula in quantum stochastic calculus. A noncommutative analogue of the Ito formula for Boson
quantum stochastic integrals was developed. His algebraic approach allowed the validity of results
for unbounded operators. He introduced an operator algebra of unbounded linear operators on
certain Hilbert spaces and considered the locally convex completions of the algebra. Results were
published in J. Maths Physics 31(1990) 2921-2929 and reviewed by Koichiro Matsuno for the
MR. It should be noted that the paper was submitted in 1986 but published after 4 years under
editorial review.

(d) In 1994, GOSE established stochastic integration in sx-algebras without Doob-Meyer de-
composition theorems. He defined the integration with respect to square integrable Martingales
in unital x-algebras. He generalized some of his previous results in this direction. Earlier, he had
worked on decomposition theorems and established a Doob-Mayer decomposition theorems. The
theory was shown to be applicable to algebras generated by annihilation and creation operators on
symmetric Fock spaces. Results were published in J. Nigerian Maths Soc 13 (1994), 9-22 and
81-101 and reviewed by Stanislaw Goldstein.

(e) In 1992, he began to publish series of papers on quantum stochastic differential inclusions of
the form

dz(t) € E(t,z(t))d A () + F(t, 2(t))dAs (1)
+G(t,x(t))dAS (t) + H(t, z(t))dt
x(tp) = xg, almost all ¢ € [ty, T

which is understood in integral form as:

x(t) € xo + /t (E(s,x(s))d Nx (s) + F(s,x(s))dAf(s)

+G(s,2(s))dAS (s) + H(s,z(s))ds)
Trans. of the Nigerian Association of Mathematical Physics, Vol. 6 (Jan., 2018) 2
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where the integral is in the sense of Hudson and Pathasarathy.

GOSE first generalised the standard Fock space quantum stochastic calculus to multivalued
stochastic integrands. His approach have applications to stochastic controls and stochastic differ-
ential equations with discontinuous coefficients. In addition, GOSE established the existence of
solutions to Lipschitzian QSDI and those of their convexifications.

In 1995, GOSE proved that a QSDI of hypermaximal monotone type has a unique adapted so-
lution. As examples, he exhibited a large class of QSDI of hypermaximal monotone type arising as
perturbations of certain quantum stochastic equations by some multivaled processes.

In 1996, GOSE developed the theory of Quantum stochastic evolutions in parallel with the clas-
sical theory. His 3 papers in this area were published in International Journal on Theoretical
Physics, Vol 31 (1992) 2003-2027, Vol 34 (1995) 323-353, Vol 35 (1996) 1909-1946 and
reviewed by 2 world class mathematicians K.R Pathasarathy and Camillo Trapani for the AMS MR.

In the year 2007, by endowing the space A of quantum stochastic processes consisting of a class
of linear maps from a preHilbert space to its completion, with seven different types of topologies
generated by diverse families of seminorms, GOSE established properties of topological solutions of
noncommutative stochastic differential equations in integral form given by:

dx(t) = E(t,z(t))d Ax (t) + F(t, 2(t))dAs(¢)
+G(t,x(t))dAS (t) + H(t, z(t))dt
x(tp) = xg, almost all ¢ € [ty, T

Results were published in Stochastic Analysis and Applications, 25, 961-991 (2007), and
reviewed for the MR by Raja Bhat.

3. Contributions to x-algebras

In 1988, GOSE worked on the Dirichlet forms of partial x-algebras. Some results on C*-algebras
were extended to partial x-algebras.

He defined on L?(A, B, T) over the triple consisting of a partial xalgebra and Ideal of A and T
a sesquilinear form satisfying some assumptions. GOSE established Dirichlet forms on L?(A, B, T)
which are sesquilinear forms whose domain is closed under the actions of Lipschitzian maps. He
examined relationship between between Markovian operators and Dirichlet forms. These results
were published in Maths Proceedings, Cambridge Philosophical Society, 104, (1988) 129-
140 and reviewed by Camillo Trapani.

In 1989, GOSE worked on unbounded partial Hilbert algebras. He introduced this notion and
studied some properties and examples. Results were published in J. Maths Physics 30, (1989),
1957-1964 and reviewed by Konrad Schmudgen.

In 1991, GOSE worked on Partial W*-dynamical systems and on completely positive conjugate -
bilinear maps on partial x-algebras. He introduced and studied the partial W*-dynamical systems
(M, {®,},t € R;), where ®, is a semigroup of a completely positive conjugate bilinear map on M.
He solved the dilation problems and described the associated Markov process. He established major
results on the generalization to a particular partial x-algebra of Stinesprings concerning completely
positive maps on C*-algebras and on generalization of Radon-Nikodym for * algebras. Results were
published in J. Maths Physics, 32 (1991), 2951-2958.

In 1993, GOSE worked on non-commutative mean ergodic theorem for partial W* -dynamical
semigroups. He furnished applications to statistical mechanics and quantum field theory and proved
the Mean Ergodic Theorem for semigroups of maps on the algebra. The result which generalized
Watanabe’s Mean Ergodic Theorem was published in Internal. Journal of Theoretical Physics
32 (1993), 1187-1196 and was reviewed by A.I. Danilenko.

In the year 2001, GOSE established an algebraic representation theory of partial algebras. He
employed the notion of operator set. Results were published in the Annals of Henri Poincare 2,
377-385 and reviewed by Camillo Trapani.

3 Trans. of the Nigerian Association of Mathematical Physics, Vol. 6 (Jan., 2018)
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In the year 2007, GOSE examined Bitraces on Partial O*-algebras. He studied some properties of
x-representations determined by bitraces. He furnished the notion of partial W*-algebras as general-
ization of W*-algebras. Results were published in International Journal of Mathematics and
Mathematical Sciences, 2007, and reviewed by Francesco Tschinke for the MR.

In the year 2008, GOSE embarked on characterizations of partial algebras. He established that
every locally convex algebra is an inductive limit of locally convex partial algebras. He identified
partial algebras that can be represented as partial algebras of unbounded operators. Results were
published in J. Mathematical Analysis and Applications, 337, 1295-1301.

In the year 2015, GOSE carried out a study on partial W*-dynamical systems and their dilations.
He introduced the concepts of a partial O* -algebras and a partial W*-algebras whose elements are
linear operators on a Hilbert space. He described the infinitesimal generators of a x-biautomorphism
groups and x-biderivations of a partial W*-algebra. He established a relationship between the gen-
erators of x-biderivatives. Results were published in Contemporary Maths 645, AMS, Prove-
dence, RI and reviewed by Chul Ki ko for the MR.

4. Contributions to mathematical finance

In the year 2004, GOSE examined some aspects of the mathematical foundations of the theory of
contingent claims in financial markets. He described the classical theory of the pricing of contingent
claims in an ideal financial markets and subsequently highlighted some ways of relaxing assumptions
of an ideal market in the case of an imperfect or real world financial markets. The article appeared
in Publications of the ICMCS 1, 197-214.

Trans. of the Nigerian Association of Mathematical Physics, Vol. 6 (Jan., 2018) 4
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Abstract

We establish the existence and some properties of viable solutions of lower semi-
continuous quantum stochastic differential inclusions within the framework of the
Hudson—Parthasarathy formulations of quantum stochastic calculus. The main results
here are accomplished by establishing a major auxiliary selection result. The results
here extend the classical Nagumo viability theorems,valid on finite dimensional
Euclidean spaces, to the present infinite dimensional locally convex space of non-
commutative stochastic processes.
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1 Introduction

This paper continues our previous works in [4-9,12—16,19,20]. On this occasion, the
existence and some properties of viable solutions of lower semicontinouos quantum
stochastic differential inclusions (QSDI) are established. In our previous considera-
tions, existence of solutions were sought and established globally in the locally convex
space of solutions. In this work, the global requirement are removed by restricting the
solution space to a subset of the entire space satisfying some topological conditions.
By employing the multivalued analogue of quantum stochastic calculus developed by
Hudson and Parthasarathy [17], in the framework of [13,19] the main results of this
paper are established.
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It is well known that classical differential inclusions could be solved by reducing
them to differential equations through selection theorems. By employing a similar
idea, this paper employs a non commutative generalization of Michael selection
result established in [20] to transform the lower semicontinuous quantum stochas-
tic differential inclusions under consideration to a quantum stochastic differential
equation.

The existence of viable solutions of differential equations and inclusions defined
on finite dimensional Euclidean spaces have been well studied, see, for example [1-
3,10,11,18,21,22]. However, similar classes of problems have not been well studied
for QSDI. This is a major motivation for this work. In the classical finite dimensional
setting, a necessary and sufficient condition for the existence of viable solutions was
established by Nagumo [22] in which the closed subset K, which is the viability
subset is bounded and satisfy the tangential condition. Other researchers have simi-
larly worked on further developments, and the extensions of Nagumo theorems and
applications see [10,11,18,22].

However, for the Nagumo-type fixed point results to work in the present non com-
mutative settings, this paper first established an auxiliary result by circumventing
certain difficulties using the unique properties of the family of seminorms that defines
the topology for the underling locally convex space of non commutative stochastic
processes.

The rest of the paper is organized as follows: Sect. 2 is devoted to the prelimi-
naries and some notations. The main results on viability of solutions including the
convergence of approximate solutions are established in Sect. 3.

2 Preliminaries

Let D be an inner product space and H, the completion of D. We denote by L™ (D, H),
the set {X : D — H : X is a linear map satisfying Dom X* 2 D, where X* is the
operator adjoint of X}.
We remark that L (D, H) is a linear space under the usual notions of addition and
scalar multiplication of operators.
In what follows, D is some inner product space with R as its completion, and y is
some fixed Hilbert space.

For each t € R, we write Lf,(RJr), (resp. L}z,([O, 1)) resp. L%,([t, 00))), for the
Hilbert spaces of square integrable, y-valued maps on Ry = [0, 00), (resp. [0, ¢);
resp. [t, 00)). Then we introduce the following spaces:

() A=LTDQE, R® I'(L3(R)).

(i) A =LTMQE, R I(LL(0.0)) 1",
(i) A/ =1, @ LY (DQ E', R ® F(L)z/([t, 00))), t >0
where ® denotes algebraic tensor product and 1, (resp. 1) denotes the identity map
on R ® I'(L ([0, 1)))(resp.I" (L2 ([1, 00))), ¢ > 0. We note that A’ and A;, > 0,
may be naturally identified with subspaces of A. For n, £ € D® E, define || - || ;¢ on A

by llxllpe = [{n, x&)|, x € A. Then {|| - l,;¢, 7, & € D® E} is a family of seminorms
on A; we write t,, for the locally convex Hausdorff topology on A determined by this
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family. We denote by A, A, and A" the completions of the locally convex topological
spaces (A, 1), (A;, Ty) and (A’, 7,,), t > 0, respectively.

We define the Hausdorff topology on clos(.Z) as follows: Forx € A, M, N €
clos(A) and n, £ € DQE, define

pne (M, N) = max(§,e (M, N), 8, (N, M))

where
Spe M, N) = sup d,z(x, N) and

xeM

x,N) = inf || x — .
dye ( ) Jnf, I v llne

The Hausdorff topology which shall be employed in what follows, denoted by, ty
, is generated by the family of pseudometrics {p;z(.) : n§ € DQE}.
Moreover, if M € clos(A) , then || M ||, is defined by

I M llne= pne (M, {0});

for arbitrary 1, § € DQE.
For A, B € clos(C) and x € C, a complex number, define

d(x,B) = inf |x —y|
yeB

8¢ (A, B) = sup dg (x, B) and
xeA

o(A, B) = max(5(A, B), 5(A, B))

Then p is a metric on c/os(C) and induces a metric topology on the space.
We define the Hausdorff topology on clos(A) as follows: Forx € A, M, N € clos(.A)
and n, § € DQE, define

pne (M, N) = max(8,e (M, N), 8,6 (N, M))

where
8ye (M, N) = sup dyz(x, N) and
xeM

d,:(x, N) = inf || x — .
ne ( ) yeN|| y llne

The Hausdorff topology which shall be employed in what follows, denoted by, g , is
generated by the family of pseudometrics {pys (.) : n§ € DQRE}.

Definition1 Let I C Ry,

1) Amap X : I — Ais called a stochastic process indexed by /.
(i1) A stochastic process X is called adapted if X (¢) € A, foreachr € I.
We denote by Ad(A) the set of all adapted stochastic processes indexed by 7.
(iii) A member X of Ad(A) is called
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(a) weakly absolutely continuous if the map ¢t — (n, X (#)€), t € I, is absolutely
continuous for arbitrary n, £ € D® E. We denote this subset of Ad (A) by
Ad(A)wac-

(b) locally absolutely p-integrable if || X (-) ||Z§ is Lebesgue measurable and inte-
grable on [19,¢) C I foreacht € I, p € (0, oo) and arbitrary n, { € D® E.
We denote this subset of Ad (fl) by Lllj) . (fl).

Stochastic Integrators: Let B(y) denote the Banach space of bounded endomorphisms
of y and let the spaces L;?IOC(RJF) and L%O(y)’loc(]RJr) be defined by: L]‘floc(RJr) =
{f : Ry —> y|f is linear, measurable and locally bounded function on R, }.
L%o(y),loc(RJr) = {7 : Ry — B(y)|n is linear, measurable and locally bounded
function on R, }.

For f e L, (Ry) and m € Ly, (Ry), we define 7 f € L7, (Ry) by

Tf)(t) =a(@t)f(t), t € Ry. Also, for f € LJ%(RJF) and 7 € L?(y),loc(R-F)’ we

define the operators a(f), a™(f) and A(7) in LT (D, F(LJ%(RJF))) as follows:

a(fle(g) = (f. gL, (Ry)e(g)

N d
at(fle(g) = -—e(g+0of)lo=0
d
)»(ﬂ)e(g) = %e(e‘mf)w =0

forg € Li(RJr).

The operators a(f), a™(f) and A(w) for arbitrary f € L;floc(R+) and m €

L (R) give rise to the operator-valued maps A 7, A;Z and A, defined by

1090(;/),100
Af () = a(fxI0,1)
AL =a*(fx[0,1)
Az (1) = (X0, 1))

t € Ry where x; denotes the indicator function of the Borel set I C R .

The operators a( f), a™(f) and A(r) are the annihilation, creation and gauge oper-
ators of quantum field theory. The maps A, A‘}' and A are stochastic processes,
called the annihilation, creation and gauge processes, respectively when their values
are identified with their ampliationson R® I" (L)z, (R4)). These are the stochastic inte-
grators in the Hudson and Parthasarathy [17] formulation of Boson quantum stochastic

integration which we adopt in the sequel.

2.1 Quantum stochastic differential inclusion

Definition 2 (1) By a multivalued stochastic process indexed by I € R4, we mean a
multifunction on I with values in clos(.A).
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(2) If @ is a multivalued stochastic process indexed by I € R, then a selection of @
is a stochastic process X : [ — A with the property that X (¢) € @ (¢) for almost
allt € 1.

(3) A multivalued stochastic process @ will be called (i) adapted if @ (1) < jl, for
each t € R ; (ii) measurable if t — d,¢ (x, @(t)) is measurable for arbitrary x €
A, n,§ € D® E; (iii) locally absolutely p-integrable if > [|@ (*)|l;¢, 1 € Ry,
liesin LY (I) for arbitrary £ € D® E

loc

The set of all locally absolutely p-integrable multivalued stochastic processes will
be denoted by loc(A)mvs For p € (0,00)and I C Ry, IOC(I X A)mw is the set of
maps @ : [ x A — clos(A) such thatt — @ (¢, X(1)), 1 € I, lies in Lloc(A)mvs
every X € LY (A).If ® € L? (I x A)mus, then

loc loc

L,(®)={pc lOC(A) ¢ is a selection of @}

Let f,g € L;’?yloc(RJr),n € L%O(T)JOC(RJF),I is the identity map on , R ®
F(L)Z/(R+)), and M is any of the stochastic processes A ¢, A;, Ayr,ands +— sl,s €
Ry. We introduce stochastic integral (resp. differential) expressions as follows. If
@ e L? (I x Apps and (1, X) € I x L2 (I x A), then we make the definition

loc loc

t t
/ D(s, X(s))dM(s) = {/0 o(s)dM(s) : ¢ € L2(d>)}
t t

0

This leads to the following definition.

Definition3 Let £, F, G, H € L? (I x A)uys and (19, xo) be a fixed point of 1 x A.
Then, a relation of the form

dX (1) € +E(t, X(1)d Ax (1) + F (1, X(1)d Ay (1)
+G(t, X()dAF (1) + H(t, X(1)dt, 1€, @)

is called quantum stochastic differential inclusions(QSDI) with coefficients in E,F,G,
H and initial data (7, xo).

Equation (1) is understood in the integral form:

t

X(t) € xo + [ (E(s, X(5)d Az (s) + F(s, X(s))dAs(s))

]

+G (s, X(s))dA;(s) + H(s, X(s))ds), tel,

called a stochastic integral inclusion with coefficients E,F,G,H and initial data (¢, xo)
An equivalent form of (1) was established in [13], Theorem 6.2 as follows: For n, & €
D® E.a,B € L3(Ry) with n = ¢ ® e(a), § = d ® e(B).define the following
complex-valued functions:

Map, Vg, 0q : I —> C, 1 C Ry, by
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Hap (1) = (a(r), T ()B(1))y
vp(t) = (f (1), B(1))y
ou (1) = (a(1), g(1))y

tel, f,ge Li’loc(R+), T e LOBO(V)’IOC. To these functions we associate the maps

WE, vF,oG, P from I x Ainto the set of sesquilinear forms on D® E define by

(WE)(t,x)(1, §) = {(n, tap () p(t, )&) : p(t, x) € E(t, x)}
WF)(t, x)(n.§) = {(n, va(1)q(t, x)&) : q(t,x) € F(1,x)}
(0 G)(t, x)(n,§) = {(n, oa®u(t, )&) : ut, x) € G, x)}
Pop(t, x) = papE(t, x) +vg(t)F(t, x) + 0 ()G (t, x) + H(t, x)
P, x)(n, &) = (n, Pap(t, x)§),i.e
P, x)(n,§) = (WE)(@, x)(n, §) + wF)(, x)(1, §)
+(0G)(t, x)(n.§) + H(t,x)(0,§)
H(,x)(n, &) = {v(t, x)(n, &) :v(., X(.)) is a selection of H(., X (.))VX € leoc(ﬁ)}

@
Then problem (1) is equivalent to
d
7 X0E) € P(r, X(1)(n, §)
(n, X(10)§) = (1, x0§) 3

for arbitrary 1, £ € D® E and almost all # € /. Hence the existence of solution of
(1) implies the existence of solution of (3) and vice-versa. As explained in [13], the
sesquilinear form valued map P:

P(t, x)(n, &) # P(t, (n, x&))

For some complex-valued multifunction P definedon I x C fort € I ,X € A, n, & €
D E.

Before proceeding to the proof of the main result in this work , we make use of
a result in [20] in which the multifunction (¢, x) — P(¢, x)(n, ) is lower semi
continuous with respect to the seminorm ||.||;¢, closed and convex.

then there exists a continuous selection, P : I x A —> sesq(D®E) of P such that

d
7 X(D8) = P, X(1))(7n. £) @

(n, X(10)§) = (n, x05) a.e 1t € 1

for arbitrary pair n, § € DQE) ,(t, x) —> P(t, x)(n, §) is continuous.
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3 Viability theory

Definition4 Let P : I x A —> sesq(DQ [E)? be a sesqulinear valued funtion, then
the subset K of A is viable with respect to P if for every (#, xo) € I x K there exists
T €1, T > to such that Eq. (4) have at least one solution K.

Definition 5 Let K € A, Asubset K € clos(A)is locally closed if K (17, &) is a closed
subset with values in C then K (1, &) is locally closed if for each x,¢ € K (n, &), there
exists p > 0 such that D(x¢, p) N K (n, &) is closed for arbitrary pair n, § € DQE.

We now define tangent cone as it applies to our non commutative settings. We make
use of Bouligand—Severi tangency concept in [11].

Definition6 Let K C A, E C A such that K(n,€) € C,E(n,€) C Cand x € K
such that x,e € K(, &) C C. Then the set E(, &) is tangent to the set K (5, £) at the
point x,¢ if

1
liminf —d(x,e +hE1, €); K(,£)) =0
h—0 h

We denote by Tk ;,¢) the class of all sets which are tangent to K (5, £) at the point
xpe for arbitrary n, £ € D® E.

Proposition 1 The set Tx (. £) (xy¢) of all vectors which are tangent to the set K (1, &)
at the point xy¢ is a closed cone.

Proof Let (x,¢) € K(n, &) According to definition 6, E(n, &) € Tk () (xpe) if
1
liminf —d(xpe +1E(n, §); K(1,§)) =0
t—0 t
Let s > 0, we observe that
1 1
liminf —d(xye +tsE(n, &); K(n, §)) = sliminf —d(x,e +tsE(n, £); K(, £))
t—0 f t—0 ts§

1
= sliminf —d(x,z + TE(n, §); K(1, §))
>0 T

Hence, sE(n, §) € Tk (xy¢) To complete the proof, we need to show that Tk (x;¢) is
a closed set.

Let N* be the set of strictly positive natural numbers. Let (E,; (1, £)),en+ be a
sequence of elements in 7k (x,¢), convergent to E (1, &) then we have

1 1
;d(xng +1EM,§); K(1,§)) = " [1(E(, &) — Ex(n, §))]

1
e +1E. (0. £): K (1. 8))
=|E®m, &) — Ex(n, )|
1
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for every n € N*. So

1
liminf —d (xye +1E(1. £); K(0,) < |E1.§) = Ea(n, 8]

for every n € N*. Since lim,,, o |E(1, ) — E,(n, §)| = 0, it follows that

1
liminf —d(xps +tE(, £); K(n,§)) = 0.
t—0 t

which shows that the set Tk, £) (x;¢) is a closed cone and this achieves the proof. O

Proposition2 A set E(n, &) € C belongs to the cone Tk (y.¢)(xy¢) if and only if for
every € > 0 there exists h € (0, €) and qne i € Dye(0, €) with the property

Xpe +h (EM. &) + quen) € K1, €)

Proof We see that E(n, &) € Tk y.£)(xye) if and only if for every € > 0 there exists
h € (0,¢€) and pye p € K(n, §) such that

1
E|xn&‘ +hE®, &) — ppenl < e.

let

1
qneh = E(Pné,h —xpg —hE®, §)),
and we have both |gye 5| < € and xpe +h(E1, &) + qne,n) = ppen € K(n,§). O

3.1 Main result

In this section, we establish the quantum generalization of Nagumo viability result.

Existence of Approximate Solutions : Let (79, xo,,¢) € I x K (1, §), then there exists
p > 0, such that D(xo ¢, o) N K(n, &) be closed, then there exists My > 0, such
that

|P(t,x)(n, §)| = My )

forevery t € [t9, T]and x € Dys(x, p) N K C A and Xpe € D(x0,06, 0) N K(n, &)
and

(T —t0)(Mye +1) < p (6)

The existence of these three numbers will be made possible because K (1, &)
is locally closed and by the continuity of P which implies its boundedness on
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[t0, T1x D(x0, ¢, p), and so the existence of My¢ > 0,and the factthatT € I, T > 1,
is chosen very close to fy. The following lemma concerns the existence of family of
approximate solutions for the problem defined on interval [7, c].

Lemma 1 Suppose K C A # O satisfying the following

(i) K is local~1y closed.
(ii) P: I x A—> sesq (]D)@IE)2 is continuous.
(iii) P(to, x0)(n, &) € Tic(=,~)(x0,n¢) for each (to, x0) € I x K.

Then, for each € € (0, 1), there exist: a non decreasing function
o:[ty, T] — [t, T]
and two stochastic processes
gl T1— A (N
and
¢, T]— A

lying in Ad (A wae N L2 (A) such that the corresponding sesquilinear form valued

loc

maps associated with any pair of n, § € DQE) given by

g: [, T] — sesq(]D@IE)2

such that
g, &) = (n, g(1)§)
and
¢ : [10, T] — sesq(DRE)?
such that

), &) = (n, p()§)

satisfy the followin

(i) t —€e <o(t) <t foreveryt € [ty, T]
(i) |gne ()] < € foreveryt € [ty, T]
(iii) @ye(o(t)) € D(xo,pe, p) N K(n, &) foreveryt € [to, T] and
@ne(T) € D(xo,0¢, p) N K (1, &)
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(iv) o satisfies

t

t
P(U(S),fp(G(S))(n,E)ds+/ g(s)(n, §)ds

0]

{n, (&) = (n, xo§) +/

10
foreveryt € [ty, T]

A pair of the triple (o, g, ¢) as in Eq. (7) with the associated (o, gne, @y¢) satisfying
(i), (ii), (iii) and (iv) above is called an €- approximate solution to the problem (4) on
the interval [ty, T].

Proof Letty € I, x0.0¢ € K(n,&)andlet p > 0, M > 0and T > 1 be as above. Let
€ € (0, 1) . We first show the existence of an €- approximate solution on an interval
[to, c] with ¢ € (19, T'].

Since for every (to, x0,,¢) € I x K(n,§), P(ty, x0)(n, &) € Tici= ~)(x0,5¢), from
Proposition (2), it follows that there exists ¢ € (fp, T, ¢ — t9 < € and gy¢ 5 has values
in C with | g,¢ 5 | < € such that

x0,5¢ + (¢ — 10) P(t0, x0)(n, &) + (¢ — to)que, h € K(n,§)

Let I, = [t9, c] , we now dgﬁne the functions o : [{0, c] — [n, CJ, and stochastic
processes g : [tg,c] — A and ¢ : [fg,c] —> A lying in Ad(A)yqe N LIQOC(A)
satisfying

o(t) =19 for t € [tg, cl, ,
gne (1) = qne fort € [19, cl,
@y (1) = x0,5¢ + (1 — 10) P (t0, x0) (1, §) + (t — to)gns fort € [to, c].

The triple (o, gy¢, ¢y¢) is an € approximate solution to the problem (4) on the
interval [fg, ¢]. This shows that conditions (i), (ii) and (iv) are satisfied, we now
show that condition (iii) is also satisfied using (5), (6) and (i). From (i) o (¢) = 1y
and (n, X(10)€) = (n,x0&) .then (n, (o (1)) = (n,xo&), therefore we have

po(®)(n,&) € D(xo,5¢, p) N K(n, &) for every t € [to, c]. Therefore, p(c)(n, &) €
K (n, &). However, by (5) and (6),we have

lp(©)(n,8) — o, ) = (c —10) | P(t0, 90) (0, §)| + (¢ — 10) |q|
=T —1)My:+1) =<p

For every t € [#y, c]. Thus (iii) is also satisfied.

We now define the e — approximate solution on the whole interval /. We make use
of Brezis—Browder theorem in [8]. Let S be the set of all e—approximate solutions
to the problem (4) defined on the interval [#g, c] with ¢ € (fp, T]. On S we define
the relation *“ <" by (01, g1,9¢, @1,5¢) = (02, 82,4, ¥2,n¢) if the domain of definition
[to, c1] of the first triple is included in the domain of definition [#g, c;] of the second
triple, and the two e—approximate solutions coincide on the common part of the
domains. Then, “ <"is a pre-order relation on S. Firstly, we show that each increasing



Viable solutions of lower semicontinuous quantum... Page 11 of 16 7

sequence ((O, m,ne» Pm,ye))m 1S bounded from above . Let (0, &m,ng» Pm,ng)Im
be an increasing sequence, and let ¢* = lim,,c,, where [tg, ¢;;] denotes the domain
of definition of (oy,, &m, e, ¥m, ne). Then c* € (1o, T].

We will show that there exists at least one element, (o *, g;;s, <p;’7‘$) € S, defined on
[t0, ¢*] and satistying (0, &m ne. ¥m) =< (07, g;g, x:;é_) for each m € N. In order to
do this, we first prove that there exists lim,, ¢, (c,) (1, ).

For each m,n € N, m < n we have u,,(s) = u, (s) for all s € [y, ¢, ]. Taking into
account (iii), (iv) and (5), we have

| O (Cm) (1. &) — @) (0. €) | < / " P(0u(s). g (0n(s)) (1, £) | ds

+/ " (), 8) | ds

= (Mpet+€)lcn—cml
for every m, n € N, which shows that there exists
lim @ (cm) (M, §) € D(xo,ne, p) N K(n, §)
m— o0

Furthermore, because all the functions in the set {0;, : m € N} are non decreasing,
with values in [#y, c*], and satisfy

om(cm) < oplcp) for every m, p € N, there exists lim, s o0 0/ (cin), then the
limit exists and belongs to [#, ¢*]. We now define a triple function (o*, g%, (p;';g) :
[t0, ¢*] —> [t9, ¢*] x C x C by

‘(1) = o (1) fort € [tg, cu], m € N,
o | lim o,(c,) fort=c*,
mr= oo
£ (1) = gm()(n, &) fort € [to, cm],m € N, forall n, & € DQE),
Sl = 0 fort = c*,
. Oom ), &) fort € [to, cu],m € N, forall n, & € DQE),
i = Jim g (en)(1. &) fors = c*,
m—= 00

This shows that (o, g;‘s, 9":5) is an e- approximate solution which is an upper bound
for ((om, &m,ng» Pm,ne))m- Applying (ii) of Brezis—Browder theorem, we define the
function

M :§ — R U {400}. Then, for each ¢y € S there exists an M- maximal
element ¢ € S satisfying £op < ¢. This shows that M ((o, gne» Pne)) = ¢ where [fo, c]
is the domain of definition of (o, gy¢, ¢,¢). Then M satisfies the hypothesis of Brezis—
Browder theorem . Then, S contains at least one M- maximal element (G, gy¢, @pe)
defined on [fo, ¢]. In other words, if (7, g,¢, @pe) € S, defined on [19, C], satisfies
(0, 8ye» Pne) < (G, &y, Pye ), then we necessarily have ¢ = ¢. We will show next that
¢ = T. we assume by contradiction that ¢ < T . Then, taking into account the fact
that ¢,z (¢) € D(x0,5¢, 0) N K(n, &), we have
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| @ne () — x0,p¢ |

5/ |P(6(s),¢(6(s)))(n,$)Ids+/ | &(n,&)(s) | ds
to

0]
< (¢ —10)(Mpz + €)
= —10)Mpz +1) < (T —t0)(Mys +1) < p

Then, as ¢u:(c) € K(n,§) and P(c, ¢(c))(n,§) € Tk (@(C))(n, &), there exists
8(0,T —¢),8 < € and ge € Csuch that | g,z |< € and

Png(€) +8P(c, 9(©) (0, &) + dqns € K(1,§)

From the inequality above we have

| @(c)(n, &) +8[P(c, p())(n. &) + que]l — po(n. §) = p

We now define the functions o : [tg, ¢ + 8] —> [t9,c + 8] and g : [tp,c + 5] — C
by

{a(z) for t € [to, ¢l
o) = _
¢ fort € [¢, ¢ + 6],

) = gne(t) fort € [ty, c], and for any n, & € DRQE),
gnel) =1, fort € [¢, ¢ + 51,

so | gue (1) |< € forevery t € [ty, ¢ + 8]. In addition, for every ¢ € [ty, ¢ + 8], 0 (1) €
[70, ¢] and therefore ¢(o () is well-defined and belongs to the set D (xg ¢, p) N K.
Accordingly, we can define ¢, : [to, ¢ + 8] — C by

t t
(. (&) = (ﬂJPOEH—/ P(U(S)@(G(S)))(mf)dﬂr/ g, §)(s)ds

fo fo

for every t € [to, ¢ + 8]. clearly, ¢, ¢ coincides with ¢, ¢ on [f, ¢] since the domain
[70, c] is included in the domain of [c, ¢ + 8] and then it readily follows that ¢, ¢, o
and g, ¢ satisfy all the conditions in (i) and (ii). In order to prove (iii) and (iv) we
observe that

@ne (1) for t € [tg, ¢].

e = {‘Pné(f) + (1 = OPE @@)E) + (1 — &g fort €[¢,¢+0]

Then ¢, satisfies the equation in (iv). since

@ne (0 (1) fort € [to, C].

Prelo 1) = {@ns @  fort e lto, &+ 6]
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it follows that ¢,z (0 (1)) € D(x0,5¢, p) N K.
Furthermore, from the choice of § and g, we have both ¢, (¢ +6) = @y (c)(n, §) +
SP(c,p(c))(n, &) + g € K(n,&) and

[ o(c+8)(n, &) —xo(m,8) |
=|@@)(n,8) +3P(,9() (1, &) +3q —x0(n,§) |
<p

and consequently, ¢,¢ satisfies (iii). Thus (o, gye, ¢pe) € S. Furthermore, since
(0, 8ne, Pye) =< (0, gye, ¢ne) and ¢ < ¢ + 8, it follows that (o, gye, @ye) is not a
M- maximal element. But this is absurd, we can eliminate this contradiction, only if
each maximal element in the set S is defined on [7, T]. Hence ¢ = T.

Theorem 1 Let K C A Assume that the following conditions hold:

(i) Themap (t,x) —> P(t, x)(n, &) associated with the right hand-side of equation
(4) is continuous.
(ii) K(n, &) is non empty and locally closed
(iii) There exists Mys > 0 such that |P(t, x)(n,§)| < Mg foreveryt € [ty, T] and
x € D(xo,ne, p) N K(n,§)
(v) (T —1t0)(Mps +1) < p
Then K (n, &) is viable with respect to P if and only if for every (ty, xo) € I x K we
have P (1o, x0)(n, §) € Tic(=,~)(X0,n¢)
Proof The proof is divided into two parts; We proceed as follows: If Part: Suppose
K (n, &) is viable with respect to P, then there exists a solution ¢ that satisfy Eq. (4).
Let (#o, x0,5¢) € I x K(n, &) , We prove that

1
Jim Ed(Xo,ng + hP(to, x0)(n, §); K(n,§)) =0.

then, there exists T € I, T > tg, and a stochastic process ¢ € K with (n, ¢(t))§) €
K (n, &) satisfying Eq. (4).

d(xo,5¢ +hP(t0, x0)(1,8); K(n,§))
< |x0.5e + R P (to, x0) (0. &) — @(t0) (0, )|

o1
= ;}Eﬂ)ﬁ |x0.56 + B P (1o, x0) (1, &) — (n, (to + h)E)|

(n, (p(to + 1) — 9(10)§) '
h

(n, (¢(to + h) — ¢(10)§) ’
h

= }}1:)1}) ‘P(lo, @(10)(. &) —

_ ‘ P(to, 9(10)) (1, §) = lim

1=ty

d
=0
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This shows that the stochastic process ¢ is a solution to Eq. (4) and belongs to K.

Only If Part Suppose P (to, x0)(1, &) € Ti(=,~) then we prove that P is viable to
K.

This concerns the existence and convergence of approximate solutions.

The proof is divided into two steps. The first step is concerned with the proof of
existence of a family of “approximate solutions” for the problem defined on interval
[0, c] with ¢ € I and later showed that the problem above admits such approximate
solutions, all defined on an interval [fy, T'] independent of the “approximate order”.
The proof of the approximate solution is given by lemma 1 Finally, in the second step,
we shall prove the uniform convergence on [#, 7] of a sequence of such approximate
solutions to a solution of the problem (4). O

3.2 Convergence of approximate solutions

Let (ex)ren be a sequence from (0, 1) decreasing to 0 and let (0%, gye &, ¥ye, k) keN be
a sequence of €;- approximate solutions defined on [7g, T'].
From (i) and (ii), it follows that

lim oy (t) =t and lim gy x(r) =0 )
k00 k00
uniformly on [y, T']. On the other hand, from (iii), (iv) and (6) we have

[(n, o (1)E)]
< (n, (@r(t) — @o)&)| + [{n, pok)|
T

T

Sf | P(ox(s), px(0x(s))(n, &) | ds +/ lgx(s)(n, &)lds + |@o, ye]
to to

S (T —t0)(Mys + 1) + |oolye < 0+ l@o,yel

for every k € N and every t € [fg, T]. Hence, the sequence (¢r)ren 1s uniformly
bounded on [fy, T']. Again from (iv), we have

10, @i (1) — i ()§)]
t d t
< I/ E(n,wk(t)é)dtolﬂf I{n, gk (10)§)|d1o |

<| P(ox(s), g (0w (s))(n, &) | ds + |gx(s)(n, §)|ds
<My + 1) |t — 5|

for every t,s € [fo, T]. Consequently the sequence (¢r)reN 1S equicontinuous on
[0, T']. However from Arzela - Ascolis theorem there exists at least a subsequence of
(@yé.k)ken that is uniformly convergent to some point @y . i.e there exists a stochastic
process ¢ : [tg, T] —> A lying inAd(fl)waC N LIZOC(/I) such that e = (1, &) and
@ne ke = (0, &) then,

lim (n, g§) = (n, lim @§)
k— 00 k—o00
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= (n, §)

Now using (iii), (8) and of the fact that D(xg y¢, p) N K (1, §) is closed, we conclude
that ¢(2)(n, §) € D(x0,5¢, p) N K(n, &) forevery t € [t, T].

t t

P(Uk(to),wk(ak(S)))(ﬁ,E)dS+/ gk(s)(n, §)ds

]

(0, oe(DE) = (1, 9ok) +/

1o
now, taking the limit of the above and using (8), we have that

t

(0. 9(OE) = (0. 9o&) + f P(s, 9(s) (1E)ds

1o

for every ¢ € [to, T], which gives the proof of the theorem.
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ABSTRACT

Kurzweil or generalized differential equations associated with
Lipschitzian quantum stochastic differential equations (QSDEs) are
introduced and studied. This is accomplished within the framework
of the Hudson-Parthasarathy formulations of quantum stochastic
calculus. Results concerning the equivalence of these classes of
equations satisfying the Caratheodory conditions are presented. It
is further shown that the associated Kurzweil equation may be used
to obtain a reasonably high accurate approximate solutions of the
QSDEs. This generalize analogous results for classical initial value
problems to the noncommutative quantum setting involving un-
bounded linear operators on a Hilbert space. Numerical examples
are given.
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1. INTRODUCTION

The role of generalized ordinary differential or Kurzweil equations in apply-
ing topological dynamics to the study of ordinary differential equations as well as
their semigroup properties outlined in Artstein [1] is an interesting motivation for
studying this class of equations associated with the weak forms of the Lipschitzian
quantum stochastic differential equations.

In the framework of the Hudson-Parthasarathy [13] formulations of quantum
stochastic calculus, existence,uniqueness and the equivalent forms of Lipschitzian
quantum stochastic differential equations have been established. In the formula-
tions of Ekhaguere [8], the equivalent form is a first order initial value ordinary
differential equation of a nonclassical type having a sesquilinear form - valued
map as the right hand side (see [2,3,4]).

We remark that the equivalent form of QSDEs facilitates the introduction and
study of the associated Kurzweil equations. This is accomplished in the framework
of the Kurzweil integral calculus (called the generalized Perron integral calculus
in the formulations of [18]). The results obtained here are generalizations of anal-
ogous results due to references [1,5,6,7,18] concerning classical initial value prob-
lems to the noncommutative quantum setting involving unbounded linear operators
on a Hilbert space.

Consequently, the technique of topological dynamics can be applied to QS-
DE:s as outlined in [1] by embedding the equivalent forms of these equations in the
space of the associated Kurzweil equations when sufficient analytical properties
of these equations have been developed. This question as well as the applications
of this concept to quantum fields/systems will be addressed elsewhere.

Finally, since the construction of Kurzweil integrals is a simple extension of
the Riemann theory of integration based on Riemann type integral sums,we use
this fact to obtain discrete approximations of weak solutions of QSDEs using the
associated Kurzweil equations.

Our numerical experiments show that the approximation methods developed
in this paper are of a reasonably high level of accuracy than the Euler scheme
and some multistep schemes considered in [4]. Moreover, the methods here are
applicable to a wider class of equations than the considerations in [4] since we work
with pure Caratheodory conditions. The rest of the paper is organised as follows: In
section 2, we outline some of the concepts which feature in the subsquent analysis
including the Kurzweil integral and some of its properties that are of interest in
respect of noncummutative quantum stochastic processes.

The Kurzweil equations associated with quantum stochastic differential
equation and some results on approximation of matrix elements of solution of
the equation are established in section 3. Sections 4 and 5 contain the major results
of this paper. In section 4, we derive a necessary and sufficient condition for a
sesquilinear form-valued map to be Kurzweil integrable. We then show that the

Copyright © Marcel Dekker, Inc. All rights reserved.
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space of Kurzweil integrable sesquilinear form-valued maps contains sesquilinear
form-valued maps that satisfy the Caratheodory conditions. In section 5, we em-
ploy our results in the previous section to prove that the weak form of quantum
stochastic differential equation and its associated Kurzweil equation are equivalent.
We then employ our approximation results of section 3 to generate approximate
values of the weak solution of quantum stochastic differential equation formulated
in Kurzweil form in section 6. We present some numerical examples.

In what follows, asin [2,3,4,8,9,10] we employ the locally convex topological
state space A of noncommutative stochastic processes and we adopt the definitions
and notations of spaces Ad(A), Ad(A)pac, Lf;c(fl), L;‘floc(ﬂ?+), and the integrator
processes Ay, 14;,“, Ag forf, g € L‘}’,?IOC(RJr), T e L}’;’(Ww(ﬂh). ForE, F,G, H
lying in L,zoc [A x I, we consider the quantum stochastic differential equation in
integral form given by

X)) = Xo+ / (E(X(s),8)d Ny (s)+ F(X(s),s)dAs(s)
+ G(X(s), s)dA:(s) + H(X(s),s)ds), tel, (1.1)

where the integral in equation (1.1) is understood in the sense of Hudson and
Parthasarathy [13]. However, Ekhaguere [8] has shown that equation (1.1) is equiv-
alent to the following first order initial value nonclassical ordinary differential
equation

d
E(n, X () = P(X(1),1)(n, §)

X(t) = Xo, 1€, T] (1.2)
As explained in [2,3,4,8—10], the map P appearing in equation (1.2) has the form

P(x, 1), &) = (WE)(x, 1)(n, &) + (y F)(x, 1)(n, §) + (0 G)(x, 1)(1, §)
+ H(x, 1)1, §) (1.3)

n,§ e DRE, (x,t) € A x I where H(x, 1)(n, &) := (n, H(x, 1)E).
The map P may sometimes be written in the form P(x, 1)(n, §) = (n,
Pyg(x, 1)§) where Pyg : A x I — Ais given by

Pop(x,t) = pep(MEQ, 1) + yg() F(x, 1) + 0, (t)G(x, 1) + H(x, 1)
for (x,t) e Ax I.

Equation (1.2) is known to have a unique weakly absolutely continuous
adapted solution @ : I — A for the Lipschitzian coefficients E, F, G, H.

Copyright © Marcel Dekker, Inc. All rights reserved.
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2. KURZWEIL INTEGRALS ASSOCIATED WITH QUANTUM
STOCHASTIC PROCESSES

Letn, § € DQUFE be arbitrary. Assume that U : [ty, T] X [tp, T] — Ais an
A-valued map of two variables 7, ¢ € [ty, T]. We consider the family of complex
valued functions: U(z, t)(n, §) : = (n, U(z, 1)§) for arbitrary n, § € DQIE asso-

ciated with the map U. We shall use the notation ftOT DU(z, t)(n, &) to denote the
Kurzweil integral of U(z, t)(n, &) in the sense and notations of Artstein [1] and
using the formulations of Schwabik [18] and write

k
S(U, D)(n, &) = Y [U(x), 1))(n, &) = U(zj, 1;-1)(n, £)]

j=1
for the Riemann-Kurzweil sum corresponding to the function U(z, t)(n, &) and
partition D : ty <11 <t;) <.... <ty =T of [tp, T].

If f:[t), T] —> A is a stochastic process, then for arbitrary 1, § € DRI,
we set U(z, 1)(n, &) = ({n, f(v)é)t fort,t € [ty, T] and therefore we have

k

=1
k
= ln, f@E; —1;-)]
=

representing the classical Riemann sum for the function f¢(¢) := (5, f(¢)§) and
a given partition D of [y, T']. In this case, we write

T T
/(mf(S)&)dSZ/ D[ fye(7). 1]

fo

provided that the Kurzweil integral ftoT DU(z, t)(n, &) exists in this case. Hence

T T T
/ DU, 1)(n. &) = / Dl fye(t). 1] = / Fre(s)ds. @1

We remark that by Theorem (1.16) (Schwabik [18]) if U : [ty, T] X [tp, T] — €
be such that U is Kurzweil integrable over [#, T'], then for ¢ € [#y, T'], we have

lim |:/ DU(zt,t) — U(c,s)+ Ul(c, c)j| = / DU(t, 1) 2.2)
S—>C fo fo
For several properties enjoyed by Kurzweil integrals and the existence of at least
one d-fine partition D of [y, T] for a given gauge 9, we refer to Chapter 1 and
Lemma (1.4) in Schwabik [18].
We now introduce the Kurzweil equations associated with equation (1.2).

Copyright © Marcel Dekker, Inc. All rights reserved.
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3. KURZWEIL EQUATIONS ASSOCIATED WITH QUANTUM
STOCHASTIC DIFFERENTIAL EQUATIONS

(i) Letthemap P : A x [ty, T] = sesq(ID® IE) be given by equation (1.3).
Then we refer to the equation

d

EW’ X(1)§)=DP(X(1),1)(n, §) (3.1

as the Kurzweil equation associated with equation (1.2).
(i) A map @ : [ty, T] — Ais called a solution of equation (3.1) if

(n, @(s2)§) — (0, P(s1)§) = / DP(®(7), 1)1, §) (3.2)

S1

holds for every s;, 55 € [ty, T] identically.

The integral on the right hand side of equation (3.2) is the Kurzweil integral
introduced in section 2. Equation (3.1) is understood in integral form (3.2) via its
solution.

We have the following results as immediate consequences of our definitions.

Proposition 3.1. Ifamap ® : [ty, T] — Ais a solution of the Kurzweil equation
(3.1) on [ty, T, then for every u € [ty, T], we have

(n, ©(s)§) = (n, Pw)§) +/ DP(®(7), 1)1, &), s € [10, T] (3.3

Conversely ifamap ® : [ty, T] — A satisfies the integral equation (3.3) for some
u € lty, Tlandall s € [ty, T] then ® is a solution of equation (3.1).

Proof: The first statement follows directly from the definition of a solution of
(3.1) when we put s; = u and s, = 5. Conversely, if @ : [ty, T] — A satisfies
the integral equation (3.3) then by the additivity of the integral, equation (3.2)
follows.

Proposition 3.2. If ®: [t), T] — A is a solution of equation (3.1) on [ty, T']
then

lim[(n, ®(5)§) — P(®(0), 5)(n, §) + P(P(0), 0)(n, §)]
= (n, ®(0)§) (3.4)

Proof: Leto € [t, T] be fixed. Then by Proposition (3.1) we have

(n, ©(s)§) —/ DP(®(z), 1), &) = (n, P(0)§)

o

MaRcEL DEKKER, INC.
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therefore

(0, P(s)§) — P(P(0),5)(1,§) + P(P(0),0)(1n,) — / DP(®(7),1)(n.8)

+ P(P(0), 5)(n, §) — P(P(0), 0)(n, §) — (n, P(0)§) =0 (3.5)
for every s € [ty, T].

By equation (2.2)
}i_{?, [/? DP(®(1), 1)(n, &) — P(®(0), s)(n, &) + P(P(0), 0)(n, 5)} =0
! (3.6)
Equation (3.6) and (3.5) yield the existence of the limit given by
lim[(n, ®(5)§) — P(P(0), $)(n, §) + P(P(0), 0)(n, §) — (1, P(0)§)]
as well as the relation

lim[{n, ®(5)§) — P(®(0), 5)(n, §) + P(P(0), 0)(n, §)
—(n, ®(0)§)] =0
which gives (3.4).
Remark 3.3. By virtue of Proposition (3.2), the following approximation holds:-

If & : [ty, T] — A is a solution of equation (3.1), then for every o € [y, T] and
for arbitrary n, £ € DQIF, the matrix element

(n, ®(s)§) = (n, P(0)§) + P(P(0),5)(n,§) — P(P(0),0)(n, §),
provided that s in [#y, T] is sufficiently close to o.

We now introduce a class of sesquilinear form - valued maps P : A x [ty, T]
— sesq(ID®IE), which are Kurzweil integrable.

4. A CLASS OF KURZWEIL INTEGRABLE SESQUILINEAR

FORM - VALUED MAPS

In what follows, we adopt some notations and terminologies employed in
[18, Chapter 1]. For each n,& € DQFE, let h,e : [to, T] — R be a family of

Copyright © Marcel Dekker, Inc. All rights reserved.
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nondecreasing functions defined on [#y, 7] and W : [0, c0) — IR be a continuous
and increasing function such that W(0) = 0. Then we say that the map P : A x
[tg, T] —> sesq(IDQIE) belongs to the class F(A x [0, T1, hye, W) for each
n, & € DRE ifforallx,y € A, 11,1, € [ty, T]

@ |P(x, 2)(n, &) — P(x, 11)(1), §)| < |hye(12) — hye(11)] “4.1)
(i) [P(x, 1)1, &) — P(x, 1)1, &) — P(y, )1, &) + P(y, 11)(n. &)
= Wlx = yllpe)lhyg (12) — hye (1) (4.2)

We now present a number of results which are simple extensions of similar results
in Schwabik [18] to the present noncommutative quantum setting. The next Theo-
rem is an extension of the convergence results of Corollary 1.31 in [18]. The proof
follows exact arguments as in [18].

Theorem 4.1. Assume that the following conditions hold :

(1) themapsU, U, : [ty, T] X [ty, T] — flaresuchthat(t, t) > Uy(t,t)
(n, &) are real valued and Kurzweil integrable over [ty, T for each
n,é§e DE,VYm=1,2,...

(i) there is a gauge w on [to, T] such that for every € > 0, there exists a
map p : [ty, T] = IN and a family of positive superadditive interval
functions ®,¢ on [ty, T defined for closed intervals J C [ty, T with
@, ([to, T1) < € such that for every t € [ty, T]

|Un(t, J)(0, &) = U(T, )1, §)| < Ppe(J)

provided that m > p(t), and (t, J) is an w-fine tagged interval with
teJ Cln Tl
(iii) there exist real valued Kurzweil integrable functions

V,];’:, ani [to, T] X [to, T] > R
and a gauge 0 on [ty, T such that for allm € IN, t € [ty, T],
Ve (T, J) S Un(t, J)(7, §) < Wye(T, J).

for any 0-fine interval (t, J), ¥ n,& € DQIE. Then the map
(r,t) = U(z, 1))(n, &) is Kurzweil integrable over [ty, T and that

T

T
lim DU, (z, 1)(T, 1)(n, §) =/ DU(z, 1)(n, §).

m—00 to fo

The next Theorem concerns some fundamental properties of Kurzweil inte-
grals in the framework of [18].

MaRcEL DEKKER, INC.
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Theorem 4.2.

1) Let U :[ty, T] X [ty, T] — A be such that (r,t) > U(r,t)(n, &) is
Kurzweil integrable over [ty, c] for ¢ € [ty, T] and that the limit

c
‘111}1 [/ DU(z,1)(n, §) — U(T, c)(n, §) + U(T, T)(n, S)} =1
c—>T— A
4.3)
exists foralln, & € DQIE. Then fZUT DU(z,t)(n, &) exists and equals 1.
(i) LetU :[ty, T1x [to, T] —> A be such that (z,t) — U(z, t)(n, &)
is Kurzweil integrable over [c, T for every ¢ € (ty, T and that the limit

c—>to+

T
lim [/ DU(T,I)(U,"E)-FU(IO,C)(U,é)—U(to,to)(n,S)}=1
(4.4)

exists foralln, & € DQIE. Then fng DU(z,t)(n, &) exists and equals 1.
(ii) Let U : [ty, T1 % [to, T] —> A be such that (t,t) — U(z, t)(n, €) is
Kurzweil integrable over [ty, T)]. Then for ¢ € [ty, T]

lim [ / DUz, 1)(n, ) — Ule, s)(n. &) + Ulc, )i, s>}

_ f DU(x. (1, &) @.5)

fo

foralln, & € DQE.

Proof: The proofs are simple adaptation of arguements employed in Theorem 1.14,
Remark 1.15 and Theorem 1.16 in [18] to the present noncommutative quantum
setting.

Next, we present some results concerning the existence of the integral in-
volved in the definition of the solution of the Kurzweil equation (3.1).

Theorem 4.3. Assume that the map (x,1) = P(x,t)(n, ) belongs to IF (A x
[to, T1, hye, W), and X : [a, b] — A, la, b] C [ty, T] is the limit of a sequence
{Xi kew of processes Xy - [a, b] — A such that fab DP(Xi(7), t)(n, §) exists for
every k € IN. Then the integral fab DP(X(7),t)(n, &) exists and

b b
/DP(X(T),t)(n,$)=k1Lrgo/ DP(Xi(t), 1)(n, &)

Copyright © Marcel Dekker, Inc. All rights reserved.
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Proof: Since the complex field € = R?, we assume without any lost of generality
that the map P(X(7), t)(n, &) is real valued. Let € > 0 be given, then by (4.2), we
have
[P(X(7), )0, §) — P(Xp(v), 11)(n, §) — P(X(1), )(n, §)
+ PX(D), 1), )] < WIXK(T) = XDy () = hye ()] (46)

forevery t € [a, b],t) < T < 1, and [1, 1] C [a, b].
If we set

Upe(t) =

€
e @) — (@) + 170

for t € [a, b] then the function U, : [a, b] —> R is nondecreasing and
(Upe(b) — Upe(a)) < €.

Since limyg_, o Xi(t) = X(r) in A for every T € [a, b] and the function W is
continuous at 0, then there is a p = p(t) € IN such that for k > p(7),

€
Wl Xi() = X(Dllpe) =< e — hg(@) 1

i.e. for k > p(7), the inequality (4.2) can be written as

|P(Xi (1), )0, &) — P(X(7), 1)(n, &) — P(X(7), 1)(n, &)
+ P(X(7), 1), §) < Upe(tr) — Upe(t1)

By inequality (4.1)
|P(Xk(7), 2)(n, §) — P(Xi(0), 11)(1, §)| = [hye(t2) — hye (1)

foreveryt € [a,bl,k € IN,t; <t <t and [#, 1,] C [a, b].
Hence the last inequality implies that

—hpe(t2) + hye(t) < P(Xi(2), ), &) — P(Xy(7), 11)(n, &)
< hye(tr) — hye(ty)

but the integrals

b
/ D(hy (1)) = hpe(b) — hy(a)

and
b
/ D(—hye(t)) = hye(@) — hye ()

exist. We conclude that the integral fah DP(X (1), t)(n, &) exists and the conclusion
of the theorem holds by Theorem (4.1) above .
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Theorem 4.4. Assume that the map (x,t) — P(x, 1)(n, &) belongs to IF(A x
[to, T1, hpe, W) and that X : [a, b] —> Ais the limit of a sequence of simple pro-
cesses. Then the integral fab DP(X(7), t)(n, &) exists for arbitrary n, § € DQIE.

Proof: By Theorem (4.3), itis sufficient to prove that the integral fab DP(¢p(7), 1)
(1, &) exists for every simple processes ¢ : [a, b] — A. If ¢ is a simple process
then thereis a partitiona = sg < §; < 55 < --- < 5 = bof[a, b]suchthat¢(s) =
cj € Afors € (sj_1,s;),j =1,2,...,kwherec;, j = 1, ..., karefinite number
of elements of A.

By the definition of the Kurzweil integral, if s;_; < 01 < 02 < 0}, then we
have the existence of the integral

/1 DP(¢(z).1)(n. &) = P(cj, 02)(n.§) — P(cj, o)1, §)

Assume that oy € (s;_1, 5;) is given, we have

lim [/ DP(¢(z), )(n, §) + P(@(sj-1), $)(n, )

x—>x/-,1+

- P(qb(sjl),sjl)(n,s)} = lim [P(c;.o0)(n. )

— P(cj, )1, 8) + P(@(s;-1), 5)(, &) — P(@(sj_1), 5;-1)(n, )]
= P(cj,00)(n, &) — P(cj, sj—1:)(n, &) + P(P(s;-1), s;-14)(n, &)
— P(@(sj-1),sj—1)(1, &) 4.7

Hence by Theorem (4.2) (ii), the integral f ‘/’i] DP(¢(7), t)(n, &) exists and
equals the computed limit given by (4.7). Similarly, it can be shown that the integral
f I DP(¢(1), t)(n, &) exists and the following equality holds.

oo

/‘/ DP(d)(T)’ t)(n’s) = P(ijsj_)(nvé) - P(ijao)(n,é)

0

— P(@(s)), s;—)n, ) + P(P(s;), s;)(n, §) (4.8)

by Theorem (4.2)(i).
Hence by additivity of the integral, we obtain

/ ' DP@E). 0 £)

i1

_ f DP(@(), )1, &) + / " DP@(). 0, £)

Sj-1 a0
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which equals the sum of expressions in (4.7) and (4.8) over the subinterval [s;_1, 5;]
of the partition.

Repeating this argument for every interval [s;_1, s;], j = 1,2, ..., kand us-
ing the additivity of the integral, we obtain the existence of the integral
[P DP(¢(x), H)(, £) and the identity

b
/ DP(p(v), 1)(n, §)

k k
=Y [P(cj, s;=)0. &) = P(cj,sj1)0] + Y _[P(@(s;-14), 5,101, §)
-

J j=1
— P(P(sj-1), s;-1)(n, §) — P(@(s;), s;-)1n, &) + P(&(s;, s;)(n, §)]
4.9)

Theorem 4.5. Assume that the map (x,1) = Px,0)1,&) is of class IF(A x
[t0, T], hpe W)and X : [a, b] — A, [a, b] C [t, T1is of bounded variation, then
the integral fab DP(X(7),t)(n, &), exists.

Proof: Theresultfollows from Theorem (4.4) because every process X : [a, b] —

Ain leoc(fl) of bounded variation is the uniform limit of finite simple processes

(cf[9,10,13]).

Next, we denote by C (fl X [ty, T], W), the class of sesquilinear form-valued
maps which are Lipschitzian and satisfy the Caratheodory conditions. We then give
a result that connects this class with the class F(A x [to, T1, hye, W).

Definition 4.6. A map P : A x [ty, T] — Sesq(IDQE) belongs to the class
C(A x [ty, T1, W) if for arbitrary n, § € DQE,

(i) P(x,-)(n, &) is measurable for each x € A.
(ii) There exists a family of measurable functions M, : [to, T] — R such

that ftUT M,g(s)ds < oo and

|P(x, $)(0, 6)| < Mye(s),  (x,5) € Ax 19, T] (4.10)

(iii) There exists measurable functions K ,fé : [to, T] — R, such that for
eacht € [ty, T, ft:) K,(s)ds < oo, and

|P(x, )1, ) = P(y, )0, §) < KW (Ilx = yllye) (411

for (x, s), (v,s) € A x [ty, T1 and where in (i) - (iii) we take W(¢) = ¢.
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Definition 4.7. For (x, 1) € A x [tp, T] and P belonging to C(A x [ty, T], W),
we define for arbitrary n,§ € DQE,

F(x, 1), §) =/ P(x,5)(n, §)ds (4.12)

fo

We have the following results that connect the two classes of maps.

Theorem 4.8. Assume that for arbitrary n, § € DQE, the map
P:A XN[tO’ T] — sesq(IDQE) is of class C(A x [ty, T1, W). Then for every
x, yeA t1,t €lty, T), F(x,t)(n, &) defined by (4.12) satisfies

() |F(x, ), 8) — F(x, 1), )| < [ Mye(s)ds

(i) |F(x,)(n, &) — F(x,11)(n, &) = F(y, ), €) + F(y, 11)(n, &)
< Wllx = yllye) [, KJo(s)ds

(iii) The map F(x,t)(n, &) belong to the class F(A x [ty, T], hye, W)

foreachn, & € DQIE , where

t t
hye(t) = f Mg (s)ds + / K. (s)ds
I 10

Proof: (i) Since (4.10) holds we have by (4.12) and for all x € A 1,0 e
[t%, T].

|F(x, )1, &) — F(x, 1)1, §)| = / P(x,5)(n, §)ds

< / |P(x. ). £)lds

< /2M,7,g(s)ds
(ii) Again by (4.12) and (4.11)
[F(x, ), &) — F(x, 1), §) — F(y, ), §) + F(y, 1)1, §)

/ [P(x. $)(n. €) — P(y. 5)(1, E)1ds

n

< / |P(x, ). &) — P(y. ). §)lds < W(llx — yllye) f K?(s)ds

forevery x, y € Aand 1,1, € [to, T].
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By (i) above
15}
[F(x, )N, &) — F(x, 1), §) < / Myg(s)ds < |hye(t2) — hye(t1)]
4]

Vx € A, t1, 1, € [to, T] satisfying inequality (4.1).
Again by (ii) above
|F(x, 1)1, &) = F(x, 1), §) = F(y, )1, §) + F(y, 11)(n, §)|

5]

< W(lx - y||ns) K%(S)ds
n

= Wlx = yllpe)lhye (12) — hye (11)]

forevery x, y € A, 11, 1, € [ty, T] satisfying inequality (4.2) .

In the next section, we prove that the Kurzweil integral of F(x, ¢)(n, £) equals
the Lebesque integral of P(x, ¢)(n, §). This facilitates the proof of the equivalence
of equation (1.2) and the associated Kurzweil equation.

5. EQUIVALENCE OF QUANTUM STOCHASTIC
DIFFERENTIAL EQUATION AND THE ASSOCIATED
KURZWEIL EQUATION

In connection with subsequent results, we assume that the map P : A x
[to, T] = Sesq(ID®I) given by equation (1.3) is of class C(A x [y, T], W) and
that F(x, t)(n, £) is given by (4.12).

Theorem 5.1. [fx : [a, b] — A, la, b] C [t, T]is the limit of simple processes
then

b b
| pra@.nns = [ Paw.so. e
Proof: By Theorem (4.8)(iii) the map (x, 1) — F(x, t)(1, £) belongs to IF (A x

[to, T1, hye, W). Therefore the existence of the integral fab DF(x(7),t)(n, &) is
guaranteed by Theorem (4.4). Also by Theorem (4.4), for every simple process ¢ :

[a, b] — A the integral [ P(¢(s), s)(n, §)ds exists and equals [ DF(¢(t), 1)
,%).

Assume now that ¢y : [a, b] — A kelNisa sequence of simple processes such
that

klim or(s) = x(s), s € la,b]
Then by (4.11),
klglgo P(r(s), s)(n, &) = P(x(s), s)(n, §)
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and inequality (4.10) enables us to use the Lebesgue dominated convergence the-
orem for showing that fab P(x(s), s)(n, &)ds exists and by Theorem (4.3)

b b
/DF(X(T)’I)(U’é):kIEEO/ DF(¢i(t), 1)(n, &)

b b
=k11)11010/ P(¢k(S),S)(77,E)dS=/ P(x(s), )0, &)ds

a

Remark 5.2.

(i) The results given above will be used for the representation of equation
(1.2) within the framework of the Kurzweil integral calculus. This is
accomplished based on the construction of the map F(x, t)(n, &) for a
given sesquilinear form - valued map P : A x [ty, T1 — Sesq(DQIE)
of class C(A x [0, T1, W) and for arbitrary n,§ € DQE.

(i) Let the quantum stochastic differential equation (1.2) be given. The
Caratheodory concept of a solution of (1.2) is equivalent to the re-
quirement that for every s;, s, € [tp, T] we have a weakly absolutely
continuous map X : [ty, T] — A satisfying

(n, x(52)§) — (n, x(s1)§) = / P(x(s), s)(n, §)ds (5.1

(ili) The solution X of equation (1.2) lies in L? (A) and is therefore the

loc

limit of simple processes in Ad(A)ac, see [2,8,13]. Consequently the
hypothesis of the last theorem remain true.

We now present our major result in this section.

Theorem 5.3. A stochastic process X : [ty, T1 — A is a solution of equation
(1.2) if and only if X is a solution of the Kurzweil equation

d
- (0. X(0)§) = DF(X(x). )(n. &) (5.2)

onlty, T, t € [to, T1, and for arbitrary n,§ € DQIE.

Proof: Assume that X : [79, T] — A is a solution of (1.2). By Theorem (4.8),
the integral f;z DF(X(7), t)(n, &) exists and

(n, X(52)§) — (n, X(51)§) = f CP(X(5), )1, )ds

_ / " DFE(X(@), 1)1, §)

5]

for all s, s, € [19, t]. Hence X is a solution of (5.2).
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If conversely X is a solution of (5.2), then again Theorem (4.8) shows that

X satisfies equation (5.1). Since F (X, t)(n, &) belongs to F(A x [1, T1, hye, W),
we have

[(n, X(52)8) — (n, X(s1)§)| =

/ DF(X(), ). s>‘

< |hype(s2) — hpe(s1)l.

Hence the map ¢+ — (n, X(#)§) is absolutely continuous on [fy, T'] since h,¢()
is absolutely continuous for each n, & € D®I. Hence X is weakly absolutely
continuous.

Remark 5.4. Owning to several properties of the sesquilinear form -valued map
P given by equation (1.3) as outlined in Ekhaguere [8], it is enough for P to be Lip-
schitzian and for inequality (4.10) to be satisfied for all (X, 1) € A x [to, T] for P
to be of class C(A x [t,, T], W) where W(z) = t. Consequently, F (X, t)(n, &) de-
fined by equation (4.12) is of class F(A x [ty, T1, hye, W)and soby Theorem (5.1)

/DF(X(T)J)(H,S)Z/ P(X(s),s)(n, &)ds, 1t €1, T]. (5.3)

Io 0]

Again, Theorem (5.3) asserts that X satisfies equation (5.2) if and only if

(n, X(0)&) — (n, X(10)§) =/ DF(X(v), 1)(n,§)

- f P(X(s). 5)(1, £)ds

by equation (5.3). This follows if and only if

d
E(,;, X()E) = P(X(1),)(n, &)

(n. X(10)§) = (n, Xo§)

Hence equations (5.2) and (1.2) are equivalent.

As a consequence of the above results, we now describe a procedure for ob-
taining approximate solutions of equation (1.2) as follows. We assume hypothesis
of Theorems (4.8), (5.1) and (5.2).

The initial value problem (1.2) is equivalent to the integral equation

(n, X($)§) = (n, X(10)§) +/ P(X(u), u)(n, §)du 5.4
fo

with the Lebesgue integral on the right hand side. If X is a solution of (1.2) on

[to, T], then by the existence and uniqueness results, X is adapted and weakly

absolutely continuous and lie in L?,_(A). Consequently the matrix elements of the
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solution can be approximated by matrix elements (n, X;(¢)£) of a simple process
X;(t) € Ad(A),,4c Which is constant on intervals of the form (¢ j—1,tj) where 1y <
t; < --- <ty =t and which on (t;_1, t;) assumes the value (n, X(7;)§) where
tio1 <t; <t;, j=1,2....,k such that

Jim (n, Xi(5)8) = (n, X(5)§) (5.5

i.e lim;_, o X;(s) = X(s) uniformly on [7y, T].
Since

P(X,t)(n, &) is of class C(A x [ty, T1, hye, W)
then

Jlim P(Xi(s), $)(n, &) = P(X(s5), 5)(1, §)

on [ty, T'] by inequality (4.11).
Assuming that the sequence

P(X;(s),s)(n, &), 1=1,2,...

satisfies (4.10) then by the Lebesgue dominated convergence theorem it can be
concluded that

t t
11_1)123/ P(Xz(S),S)(n»é)dS=/. P(X(s), s)(n, §)ds. (5.6)

to

However, for a fixed [ € IN, we have

t ki tj
[ poae.smsas =3 [ pep. s eds
1o j=11j-1

ki
. [F(X(z)), t;)(n,§) — F(X(t)), t;—1)(n, §)],

Jj=1

which shows that the integral fré P(X(s), s)(n, £)ds appearing in (5.6) can be
approximated by the Kurzweil integral sums of the form

ki
Z[F(X(Tj), 1)), §) — F(X(t)), tj-1)(n, §)].

j=1

Finally, using (5.4) the matrix element (1, X (¢)&) of the solution X can be approx-
imated by the sum

ki
(n, X(0)§) = (n, Xo§) + Z[F(X(Tj), 1)1, §)
=
— F(X(zj), tj-1)(n, §)] (5.7)
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provided that a sufficiently fine division#y < t; < #, < --- < # = t is constructed
and the choice of 7; € [tj_1,¢;], j =1,2,..., k is fixed in order to obtain the
uniform convergence (5.5).

6. NUMERICAL EXAMPLES

In the notation of section 1, we consider the simple Fock space I"(Lf,(ﬂh))
where y =R =0, f =g =1, and its L%(Q, F, W) realization where (2, F,
W) is a Wiener space. Each random variable X is identified with the operator of
multiplication by X so that Q(¢) = A(z) + A1 () = w(z) is the evaluation of the
Brownian path w at time 7. In this case, it has been shown that quantum stochastic
integrals of adapted Brownian functional F such that f[f] E[F(s,-)*lds < oo exists
(see [2,4]). Here E is the expected value function.

For exponential vectors n = e(«) and & = e(8) where «, § are purely
imaginary- valued functions in LZG(R+), the equivalent form (1.2) of the quantum
analogue of the classical Ito stochastic differential equation

dX(t, w) = —%X(t, w)dt —+/1 — X2(t, w)dW(t)
X(t) = Xo, t€[0,T] 6.1)

is given by
d
7 EX (@ wizw)) = E(=p0)v1 - X2(t, w)z(w))
+ E(—a()/1 — X2, w)z(w)) + E(— %X(t, w)z(w)>

X(tp) = Xo, t€[ty, T] 6.2)

where

o0 l o0
z(w)zexp{ fo (—a(s) + Bl&)dw(s) = 5 /0 (az(S)Jrﬁz(S))dS}
(6.3)

(see [2,4] for details ).

With Xo(w) = 1, a(t) = B(¢t) = i, and the interval [0, T'] = [0, 1], then we
have by equation (6.3), z(w) = e and E(Xo(w)z(w)) = E(z(w)) = e.
The exact solution of equation (6.2) is then given by

E(X(f)z(w)) = ' 2! (6.4)

We now apply our approximation procedures to discretize equation (6.2)
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Fort € [0, 1], X € A the map Pyg defined in section 1 is

1 1
Pop(t, X) = —B(t)y'1 — X2(t) — a(r)y/1 — X2(t) — EX(t) = —EX(t)

and
P(X, 01, §) = <77, (—%X(t))$>
for arbitrary n, & € D®IE. By equation (4.12)
F(X(7),)(1n, §) = (<n (—%X(T)>E>)t = —%tE(X(f)Z(w))

Equation (6.2) is equivalent to (5.2) by Theorem (5.3). Thus we use Proposition
(3.2) which leads to the approximation

(n, X(5)§) = (n, X(0)§) + F(X(0),5)(n,§) — F(X(0),0)(n,§)
(6.5)

for every o € [0, 1] provided that s € [0, 1] is sufficiently close to o. Thus from
equation (6.5),

1 1
E(X(s)z(w)) = E(X(0)z(w)) — st(X(G)z(w)) + EGE(X(G)z(w))
1
= <1 — E(S — o)) E(X(o)z(w)) (6.6)
Again by equation (5.7), we have
ki t
0 XW8) = (. Xe8) + ) [ PO . s
j=171j-1
ie
1
E(X()z(w)) = E(Xoz(w)) — > Z E(X(tj)z(w)(t; —tj-1) (6.7)
j=1
wheret, <t) <t <--- <, =tand t; € [t;_y, t;].

If we fix T; =t;_; for each j = 1, 2.. and a constant steplength &, then we
have from equation (6.7)

1
E(X(tj)z(w)) = <1 - Eh)E(X(tj—l)Z(w))a j=12.N (6.8)
Again, fixing t; = %(tj +tj_1), j = 1,2.. then equation (6.7) gives

1
EX(tj)z(w)) = E(X(tj-1)z(w)) — EhE(X(Tj)Z(w)) (6.9)
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Table 1. Numerical Values with 7; =¢;_; and a(t) = B(t) =i

Approximate Values  Exact Values Absolute Errors
N h E(X(ty)z(w)) el-ain |E(X(ty)z(w)) — ¢!~
g 273 1.622051700 1.648721300 0.02666960000
16 274 1.6356182000 1.6487212710 0.01310307000

where the intermediate values E(X(t;)z(w)) are calculated by setting o =1;_;
and s = 7; in (6.6) to give

1
E(X(7j)(z(w)) = [1 5 tj—l)]E(X(tj—l)Z(w)) (6.10)

By putting & =273, h = 27 and fixing 7, as above ,we generate the following
tables of values for the case @« = 8 = i. Equations (6.8),(6.9),(6.10) are used to
generate the following values at the final time 7 = 1 in Tables 1 and 2 below.

In order to compare the accuracy of the method of this paper ,we now apply
the method to generate approximate values for the equivalent form of Ito equation

dX(t) = %X(t)dt + X(@®)dW(t)

X(t) =1, te€][0,1] 6.11)
given by

dEXt —SEXt 6.12

E(()Z(w))_ﬁ (X, w)) (6.12)

where z(w) =e,t € [0, 1], for a(t) = B(¢t) =i with exact solution E(X)t,
w)z(w) = e!+3!

Equation (6.12) had been discretized in [4] using the Euler and a 2-step
scheme. We compare the results with those of the present scheme.

Table 2. Numerical Values with 7; = %(lj +ti_Danda(t) = @) =i

Absolute Error
Exact value |E(X(ty)z(w))

N h o EX(y)zw) E(X(ty)z(w)) = el —e!m 2N |

8 27 09375 1.700716800  1.649283900 1.648721300  0.000562600
16 27%  0.96875 1.67460900 1.648858600 1.648721271  0.000137329
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Table 3. Numerical values with 7; = ¢, and a(t) = B(t) = i

Approximate Values Exact values Absolute Errors
N h E(X(ty)z(w)) eI E(X(ty)z(w)) — el
g 273 10.74888529 12.18249396 1.433608668
16 274 11.402065680 12.18249396 0.78042828

For equation (6.11),we have the followings. From equation (6.12) and using (4.12),

3
F(X(0), 1) = StEX(T)z(w))

and from (6.5)

E(X(s)z(w)) = (1 + ;(S - 6)>E(X(0)Z(W))- (6.13)
From (5.7),

E(X(t)z(w)) = E(Xoz(w)) + % ijIIE(X(Tj)Z(w))(tj —j-1). (6.14)
Fixing 7; =1;_, for each j =1,2--- and h = (t; — t;_,), then we have from
(6.14)

E(X(tj)z(w)) = <1 + %h)E(X(tj—l)Z(w)) (6.15)

Again fixing 7; = %(tj + tj_1), we have from (6.14)
3
E(X(1j)z(w) = E(X(tj-1)z(w)) + EhE(X(Tj)Z(w))v (6.16)
with intermediate values
3
E(X(rj)z(w)) = [1 + E(Tj - tj_l)i|E(X(tj_1)z(w)). (6.17)

Our numerical experiments yield the following results at the final time t = 1. We
use equation (6.15) for Table 3.
Equations (6.16) and (6.17) are used to generate Table 4.

6.1 Conclusion

(1) Itis discovered that the schemes (6.8) and (6.15) when t; is fixed at the
starting point of each subinterval of the partition points generate exactly
the same values as Euler scheme considered in [4]. This is confirmed
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Table 4. Numerical values with 7; = %(tj +ti—Danda(t) = B(t) =i

Absolute Error
Exact value |E(X(ty)z(w))
N h ooy EX@iw) EX@zw) = iv o —elthw]

8 2% 0.9375 10.97032998  12.08924593  12.18249396  0.093248032
16 27* 096875 11.58995788  12.15756309 12.18249396  0.024930868

by Tables 1 and 3 . The Tables also show that the approximate schemes
produce better results with finer gridpoints.

(i) However, Tables 2 and 4 show a more superior convergence rate when t;
is fixed at the midpoint of each subintervals of partition. In Table 2, with
constant steplengths 2~ =272 and h = 2~* ,we have convergence to at
least three decimal places at each of the gridpoint with cummulative ab-
solute errors at the end point # = 1 being 0.000562600 and 0.000137329
respectively. This experiment shows that the approximate scheme (5.7)
has a superior convergence rate when t; is taken as midpoints of each
subinterval and expression (6.5) is used to compute intermediate values.
This level of accuracy is comparable to that of a 2- stage Runge-Kutta
scheme reported in [2] applied to problem (6.12).

In comparison with the Euler and the 2-step method applied in [4] to problem
(6.11), Table 4 shows that the method of this paper is more accurate than those
two schemes when t; is taken as the midpoint of each of the partition subinterval.
In particular, for a steplength of 4 = 273, the global accumulated error at the
final time t = 1 is 0.093248032 compared with the global errors of 0.39983038
and 0.11070989 with h =273 and 2 respectively for the 2-step scheme (see
[4]). We remark that equation (5.7) permits a change of steplenghts at any point
during computation and that this method is suitable for equation (1.2) where the
map (¢, x) — P(t, x)(n, §) is not necessarily continuous jointly in # and x and the
matrix elements are not necessarily differentiable more than one time.

In particular, the methods developed in this paper provide a simple approach
for computations of expectations of functionals of Ito processes when the quantum
equations are considered only in the simple Fock spaces. Applications of the
methods to problems in quantum fields/systems will be considered elsewhere.
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Abstract We establish a continuous mapping of the space of the matrix elements of an
arbitrary nonempty set of quasi solutions of Lipschitzian quantum stochastic differential
inclusion (QSDI) into the space of the matrix elements of its solutions. As a corollary, we
furnish a generalization of a previous selection result. In particular, when the coefficients
of the inclusion are integrably bounded, we show that the space of the matrix elements of
solutions is an absolute retract, contractible, locally and integrally connected in an arbitrary
dimension.
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properties - Matrix elements - Quantum stochastic processes
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1 Introduction

Investigation of the diverse features of solution sets of differential inclusions defined on
finite dimensional Euclidean spaces has been a major preoccupation of classical analysis.
Indeed, many authors (see, for example, [1, 9-12, 16, 25-27]) have studied topological
properties of solution and reachable sets of such inclusions to a large extent. In [26], the
space of solutions of classical Lipschitz differential inclusions has been shown to be an ab-
solute retract and as a consequence, the space enjoys the topological properties of some
kinds of connectivity and contractibility. By contrast, in the context of quantum stochastic
differential inclusions (QSDI), matters are somewhat different. The analysis of QSDI con-
cerns quantum stochastic processes as operator valued processes that live in certain infinite
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16 E.O. Ayoola

dimensional locally convex spaces. An extensive study of various features of the solution
set of QSDI is yet to be undertaken although some efforts [3, 5-7] have been made con-
cerning the establishment of continuous selections of solution sets and the construction of
approximate reachable sets and their continuous representations.

The objective of this paper is to establish further topological properties of solution sets
of QSDI within the framework of the Hudson and Parthasarathy [18] formulation of Boson
quantum stochastic calculus. To this end, we first establish a continuous mapping of the
space of the matrix elements of an arbitrary nonempty set of quasi solutions of QSDI into
the space of the matrix elements of its solutions satisfying certain conditions. This mapping
consequently facilitates the establishment of the space of matrix elements of solutions as an
absolute retract. This ultimately leads us to showing that the space is connected and con-
tractible in some sense. These properties of the solution space are needed in our ongoing
study of optimization problems for QSDI. In addition, the result here generalizes our previ-
ous selection result in [7] by removing the requirement of compactness of the domain of the
selection map.

We remark here that a very strong motivation for studying QSDI among others, is the
need for sufficient information and knowledge about the dynamics and fluctuation of the
systems described by discontinuous quantum stochastic differential equations which may be
reformulated as regularized QSDI. Various analytical and numerical features of solutions of
such equations need to be well understood. Continuous and discontinuous quantum stochas-
tic differential equations often arise as mathematical models which describe among other
things, quantum dynamical systems and several physical problems in quantum stochastic
control theory and quantum stochastic evolutions. Also, in the Hudson-Parthasarathy [18]
formulation of quantum stochastic calculus, quantum stochastic differential equations are
known to sufficiently generalize classical stochastic differential equations driven by martin-
gales (see, for example [2, 4-6, 13—15, 23, 24] and the references they contain). We mention
that in the work of [8], a class of absolute retracts in spaces of integrable functions was
established. This class has been shown to contain decomposable sets and sets of solutions to
classical Lipschitzian differential inclusions by using some previously established selection
results.

The rest of the paper is organized as follows: In Sect. 2, we outline some fundamental
definitions, notations and auxiliary results for the establishment of the main results in Sect. 3.
Section 3 is devoted to the establishment of the main results of the paper and the associated
corollaries.

2 Fundamental Concepts, Structures and Preliminary Results

As established in [13], we outline in this section, some fundamental concepts, structures and
preliminary results that are employed in what follows.

Let D be an inner product space and H, the completion of D. We denote by Lt (D, H)
the set {X:D — H : X is a linear map such that DomX* D D, where X* is the adjoint
of X}. We remark that L™ (D, H) is a linear space under the usual notions of addition and
scalar multiplication of operators.

If H is a Hilbert space, we denote by I'(H) the Boson Fock space determined by H. For
f € H, e(f) denotes the exponential vector in I'(H) corresponding to f. We remark here
that the subspace E of I'(H) generated by the set of exponential vectors in I'(H) is dense
in I'(H). Since the exponential vectors are linearly independent, an operator with domain
E is well defined by specifying its action on e(f), f € H. For other properties enjoyed by
the exponential vectors and Boson Fock space, we refer the reader to [17-20, 23, 24].

@ Springer



Topological Properties of Solution Sets of Lipschitzian Quantum 17

In what follows, D is some inner product space with R as its completion, and y is some
fixed Hilbert space.

(i) For each r e R, = [0, 00), we write Lf, (Ry) (resp. L3([0,1)); resp. L ([t, 00))), for

the Hilbert spaces of square integrable, y-valued maps on R (resp. [0, 7); resp [, 00)).

(i) The non-commutative stochastic processes which we shall discuss are densely-defined
linear operators on R ® I"(Li (R4)); the inner product of this complex Hilbert space
will be denoted by (-, -) and its norm by || - ||.

(iii) Let E,E,, and E’, > 0, be the linear spaces generated by the exponential vectors in
F(Lf, RY)), F(Lf,([O, t))) and F(Lf,([t, 00))), respectively, then we adopt the follow-
ing spaces as in [13].
@ A=L*(DQE. R®(L](R,))).
(b) A =L"DE, RT(L}(0.0) 1",
© A =1, LTMYE, RQT(L;([1,0)))), t >0,
where @ denotes algebraic tensor product and 1, (resp. 1) denotes the identity map
on R ® ['(L3([0,1))) (resp. ['(L3([r,00))), t > 0. We note that A" and A, t > 0,
may be naturally identified with subspaces of A. For n,& e DQE, we define || - ||,¢
on A by x|l = [{n,x€)], x € A. Then {x — ||x|l,z, 7,£ € D®E} is a family of
seminorms on A; we write Ty for the locally convex Hausdorff topology on A de-
termined by this family. We denote by A, .4, and A’ the completions of the locally
convex spaces (A, Tw), (A, Tw) and (A", Tw), t > 0, respectively. We remark that the
net {4, : r € R} furnishes a filtration of A.

Hausdorff Topology 1f A is a topological space, then clos(A) [resp. comp(A)] denotes the
collection of all nonvoid closed (resp. compact) subsets of A. We shall employ the Hausdorff
topology on clos(.A). This is defined as follows: For x € A, M, N € clos(A), and n, & €
DQE, set

dy(x, V) = yiéljffﬂx = Yl
8y (M, N) = sup dyg (x, N)
xeM

and
Py (M, N) = max (8, (M, N), 8, (N, M)).

Then by this definition, {0,z (-, ) : 7, & € D ® E} is a family of pseudometrics (see [13-15])
which determines a Ha~usd0rff topology on clos(A). We denote this topology by 7 in what
follows. If M € clos(A), then || M|, is defined by

Mllng = pne (M, {0})

for arbitrary n,§ e DQE.
Similarly, for A, B € clos(C) and x € C, the complex numbers, we let

d(x, A) = inf |x — y|,
yEA
h(A, B) = supd(x, B)

x€eA
and

p(A, B)=max(h(A, B), h(B, A)).

Then p induces a metric topology on clos(C).

@ Springer



18 E.O. Ayoola

Sets: We employ the usual set-theoretic operations such as

A+B={a+b:acAandb e B},
a+B={a+b:be B}

for sets A, B and a point a.

Boson Quantum Stochastic Integration ~ We first present here, a number of important nota-
tions and definitions.
Let/ CR,,

(i) Amap X : I — Ais called a stochastic process indexed by 1.
(i1) A stochastic process X is called adapted if X (¢) € ./L for each ¢t € I. We denote by
Ad(A) the set of all adapted stochastic processes indexed by 1.
(iii) A member X of Ad(A) is called
(a) weakly absolutely continuous if the map t — (n, X (t)€),t € I, is absolutely con-
tinuous for arbitrary 1, £ € D @ E. We denote this subset of Ad (A by Ad (A) -
(b) locally absolutely p-integrable if || X (-) ||f;é is Lebesgue measurable and integrable
on [fy,1) €I foreacht € I, p € (0, 00) and arbitrary 1, § € D® E. We denote this
subset of Ad(A) by L? (A).
(iv) We denote by wac(A) the completion of the locally convex space (Ad(A)qe, T"%)
where the topology " is generated by the family of seminorms {® — |®[,: : n,§ €
DRE, ® € Ad(A),u} by

T

d
(n, @(s)§)|ds.

Dl = || D (7 —
1Ple = | (0)||r,g+/t; =

Associated with wac(A), we define for arbitrary 1, £ € D®T, the space of complex
valued functions

wac(A)(n, &) = {(n, P()&) : ® € wac(A)}.
For ® € wac(A), M € clos(wac(A)), we define

dpe (P, M) := inf |® — u]e.
ueM

We shall frequently utilize the function space AC([#y, T'], C), which is the space of
absolutely continuous functions on [zy, T] with values in the complex field C endowed
with the norm defined by

T

Z—);(t) dt, yeAC(t,T],C).

|ylac = |y ()] +/

o

For any nonempty set Q € clos(AC([ty, T1, C)), we define the point-set distance by:
dac(y, Q) := inf |y — zac.
zeQ

In what follows, we denote by I, the interval [y, T'] and the characteristic function of
asubset E of I is denoted by xg.
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Topological Properties of Solution Sets of Lipschitzian Quantum 19

Stochastic Integrators Let B(y) denote the Banach space of bounded endomorphisms
of y and let the spaces L?,()C(]RJr) (resp. L;’f(y) 1oe(R4)) be the linear space of all measur-
able locally bounded functions from R, to y (resp. to B(y)). If f € LV we(R4) and €

B(y) 1ocRy), then 7 f is the member of LV we(R4) given by (wf)(t) =n () f(t), t e R,
For f e L? (R+) and T € LB(V) we(Ry), we define the operators a(f), at(f) and A(w)
in L*(D, F(Li(RJr))) as follows: a(f)e(g) = (f. &) 12r,)e(8). a*(fe(g) = Le(g +
0f)|o=0, A(T)e(g) = ie(e"”f)h,:o for g € Lf,(]RQ. The operators a(f),a™(f) and
A(r) for arbitrary f € L7, (Ry) and 7w € L), (Ry) give rise to the operator-valued
stochastic processes A, AJr and A, defined by A (¢) = a(f xp.), A+(t) =at(f x0.))-
Ax () = AT x0.0), t ERY, where x1 denotes the indicator function of the Borelset / C R,.
These are called the annihilation, creation and gauge processes, respectively, when their val-
ues are identified with their ampliations on R @ F(Lf,(]Rg). They are the stochastic inte-
grators in the formulations of the Hudson and Parthasarathy [18] quantum stochastic inte-
gration which we adopt in this work. Accordingly, if p,q,u,v € L? (A), f, g € L3, (Ry)

and 7w € L, ,.(R4), then we interpret the integral

f (P()d Az (8) +q()dAs(s) + u(s)dAL (s) +v(s)ds), fo,1 €Ry
1

as in Hudson and Parthasarathy [18] (see [2, 4] for details).

Quantum Stochastic Differential Inclusions In our present framework, we shall outline
some fundamental concepts concerning quantum stochastic differential inclusions involving
multivalued stochastic processes in this subsection. We present the following definitions.

(a) By a multivalued stochastic process indexed by I € R, we mean a multifunction on /
with values in clos(A).

(b) A selection of a multivalued stochastic process ® indexed by I is a stochastic process
X : [ - A with the property that X (¢) € ®(¢) for almost all t € 1.

(¢) A multivalued stochastic process @ will be called (i) adapted if ®(z) C A, for each
t € Ry; (i1) measurable if the map ¢ — d,¢(x, ®(¢)) is measurable for arbitrary x €
.Ai n,& € DQIE; (iii) locally absolutely p-integrable if r — [[®(f)]l,¢,t € Ry lies in

(1) for arbitrary n, £ e DQE.

loc

Further notations:

(1) The set of all locally absolutely p-integrable multivalued stochastic processes is denoted
by LD (A)ms.

(2) For p € (0,00) and I C Ry, L7 (I x .A)mvs is the set of maps @ : I x A — clos(A)
such that t — <I>(t X (1)),t €1 lies in LIDC(A),,M for every X € LIOC(A).

B Ifde Lloc(l x A) s then we define the set

L,(®)={pelL] (A) : ¢ is a selection of ).

loc

(4) In what follows, f,g e LS, (Ry),w € LB(V) we@®4), 1 is the identity map on R ®
I‘(Li (R)), and M is any of the stochastic processes A f, A;, Agz,ands — s1,s e R,.

Accordingly, if ® € LIZDC(I X A) s and (¢, X) € I x L2
stochastic integral:

y.loc

2 (A), then we define multivalued

/ DP(s, X(5)dM(s) = {/ G(s)dM(s): ¢ € L2(<1>)}.
fo

fo
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20 E.O. Ayoola

Thus, for coefficients E, F, G, H € L2 (I x A)mm, this paper is concerned with the es-

loc

tablishment of some topological properties of solution sets of quantum stochastic differential
inclusion in the integral form given by

X(t)ea +/ (E(s, X(s))d Ny (5) + F(s, X(5))dAs(s)
fo

+ G(s, X(s))dA;(s) + H(s, X(s))ds), almostall? e[z, T]. 2.1

As in [3, 5-7], corresponding to any pair of elements 7,§ € DQIE such that n = ¢ ®
e(),E=d®eB),a,pec L,z/ (R;) we shall employ the equivalent form of (2.1) as es-
tablished in [13] given by the nonclassical ordinary differential inclusion:

d
d—(n, X(1)§) € P(t, X(1)(n, ),
t 2.2)

X(0)=a, almostallz e[z, T].
The multivalued map P appearing in (2.2) is of the form
P(t,x)(n,8) = (, Pop(t, X)§).
The map Pyg : [to, T] A — 24 has the explicit form:
Pog(t, x) = pag (O E(t, x) +vg(t) F(t,x) + 0, ()G (t, x) + H(t, x).
The complex valued functions pag, vg, 0o : [to, T]1 — C are defined by

Map(t) = (a(t), T (1) B(1))y, vp (1) = (f (@), B(D))y,
Ua(t)=<a(t)sg(t)>ya te[f(), T]

for all (z,x) € [to, T] X A and the coefficients E, F,G,H belong to the space
L,zac([to, T] x A)s of multivalued stochastic processes with closed values.
As explained in [13], the map P cannot in general be written in the form:

P(t,x)(n,8) = P(t, (n, x))

for some complex valued multifunction P defined on [to, T] x C, for t € [tp,T], x € A,
n,§cDRE.

A solution of QSDI (2.1) is a stochastic process ® € Ad(A) e N L,zgc(./{) satisfying
QSDI (2.1). Since solutions of QSDI (2.1) corresponding to an initial value a € A are not
unique, the symbol S™(a) denotes the set of such solutions. Associated with ST (a), we
define the space of absolutely continuous complex valued functions on the interval [y, T']

corresponding to each pair 1, £ e D®E as follows:

ST (@@, &) = {(n, 2()§) : @ € ST (a)}.

We remark that in view of the equivalence of QSDI (2.1) and (2.2) which has already been
established in [13], we can study the diverse features of the solutions of QSDI (2.1) by
equivalently study the features of the solutions of the nonclassical ordinary differential in-
clusion (2.2). This has been the situation in our previous works mentioned earlier.

In what follows, we assume that the coefficients E, F, G, H in (2.1) and the map (¢, x) —
P(t,x)(n, &) appearing in (2.2) satisfy the following conditions.
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Topological Properties of Solution Sets of Lipschitzian Quantum 21

Sy The values of the map (¢, x) — P(t, x)(n, &) are nonempty closed, subsets of the field
C of complex numbers for each point (¢, x) € I x A and n,§ eDQE.

Siiy The map t — P (¢, x)(n, &) is measurable.

Sy The coefficients E, F, G, H are continuous from / x A to (clos(fi), TH).

S(vy There exists a map K,z : [fo, T]1 — Ry lyingin L ,lw,([to, T1]) such that

p(P(t,x)(n, &), P(t, y)(0,8)) < Kpe (O]lx — yllye

for t € [ty, T], and for each pair x, y € A.

Subject to the conditions S(;)—~S) and corresponding to each quasi solution process Z €
Ad(A) . of QSDI (2.2), where

d
d (Em, Z(t)§), P(t, Z(1))(n, S)) <pp®), telho,T],
Pne €L ,loc([to, T1), the following existence result has been established in [13].

Theorem 2.1 ([13]) Suppose that S-Sy holds. Then there exists a solution R(Z) €
ST(Z(ty)) of QSDI (2.1) such that

1Z@) — R(Z)(O e <Epe @), t€lto, T], (2.3)
‘ d Z() d R(Z)(1)
EM’ §) — E(n, &)

<Ky OE,:(t) + pye(t), almostallt e [ty, T, 2.4)

where
E, @) = / exp(Mz () — M,z (s)) pne (s)ds, 2.5)
fo
M) = / K (s)ds. (2.6)

We remark that Theorem 2.1, which is a generalization of the Filippov existence theorem
to the present noncommutative setting played a central role in our previous works in [3, 5-7].
These works concerned the establishment of a continuous selection of some multifunctions
associated with the solution sets and some continuous representations of the reachable sets.
The result has also facilitated the derivation of some exponential formulae for the reach-
able sets, construction of their approximate sets and the establishment of error estimates for
discretized versions of QSDI (2.2).

Define the space of solutions of QSDI (2.2) by

sD(p):= U SD(a)

acA

and the associated space of absolutely continuous convex valued functions corresponding to
each pair of 7, £ e DQE is defined by:

SOPY(n, &) :={(n, P()E) : ® € ST (P)}.
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For arbitrary pair of elements n, £ € D® E, and for any process y € wac(A) and a family of
processes {y;} ;=0 C wac(ﬂ), we employ the respective notations: y,e(-) := (n, y(-)§) and
Ve, i () i=(n,y;(1)&), j=0,1,2,.... For any non empty subset M C wac(A) we define
the function space M (1, §) := {®,:(-) := (, P()§) : P € M} and for any element y,:(-) €
M (n, &), we define the number

V(yne) :=dac(yne (), S(P)(1, §)).

Our main result in this paper is the construction of a pair of mappings Y : wac(A) —
wac(A) and R : wac(ﬁ)(n, &) —> wac(ﬁ)(n, &) with respective domains M and M (1, &)
of general types such that the map R is continuous on its domain. The construction of
the maps leads to the establishment of some topological properties of the function space
ST (P)(n, &) associated with the solution space S (P) of QSDI (2.2). To prove the main
result in the next section, we present here some further notations and results. If B C [ty, T']
is a measurable set, we write u () for its Lebesgue measure and y(¢) for its characteristic
function. We shall employ the notion of a continuous decomposition (or partition) of the
interval [#y, 7] depending on a parameter y € ¥ where Y is a separable metric space. We
recall the following definition from [26].

Definition 2.2 Let Y be a separable metric space. A family of subsets {7;(y)};>; of the
interval [fy, T] depending on the parameter y € Y will be called a continuous decomposition
of [1y, T] if the following conditions hold.

(1) T;(y) is a measurable set forall y € Y and i > 1.

@) T NTi(y)=¥forye,i# jand ., T;(v) =1, T].

(3) If yop € Y then for any y € Y, there exists a neighbourhood V (yy) and a finite in-
dex set €2(yp) such that when i does not belong to 2(yg) and y € V(yo) the relation
w(T;(y)) =0 holds.

@) wu(T;(y) AT;(y9)) — O for y — yo when yg € Y and fori > 1, where AAB=AUB\
A N B for any two subsets A, B of [ty, T].

Next, we recall the only lemma established in [26, p. 159] in a form that is suitable for
the setting of this paper. The result remains valid for the present framework.

Lemma 2.3 Let Y be a nonempty subset of wac(A) so that Y(n, &) C wac(fl)(n, &) cor-
responding to an arbitrary pair n,§ € DQE. Let v(y,¢(-)) > 0 for y,e € Y(,&). Suppose
that {Tn?(yng)}mzl is a continuous decomposition of the interval [ty, T]. Then for o > O there
exists a continuous decomposition {le (ye)}j=1 of [to, T] and a set of processes {y;}j=1 CY
with the corresponding set of complex valued functions {yue j}j=1 C Y (n, &) satisfying the
Sfollowing:

(1) If (T} (y,)) > 0. then

D T (vae) A T (vye. ) < minfo, 20(y,e)}.

m>1

@ Y (T 54 O (T AT (ve 1)) < minfo, 20(3e)}. g € Y (1, £).

m,jz1

Remark 2.4 In the proof of the only lemma in [26], a continuous decomposition of the inter-
val [ty, T'] was constructed with parameters that are elements of the space AC([#o, T'], R").
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This construction remains valid in our case for parameters lying in the space AC([fy, T], C).
By using suitable notations, we outline here a similar construction that would be needed in
the proof of our main result.

By the definition gf a continuous decomposition of the interval [#,, 7], we can choose for
each yp € Y Cwac(A) with y,¢ o(-) € Y (n, &) anumber §(y,z,0) > 0 satisfying

I .
3(ype0) < 2 min{o, v(y,z,0)}
such that

min{o, v(yyz,0)},

| =

D (T ) AT (e 0)) <

i>1

when y,¢ € Y (1. &) satisfying |y, () — Yye.0()lac < 8(ye.0)-

We construct a ball B(yy¢, 8(y,¢)) of radius §(y,z) about each function y,:(-) € Y (1, §).
These balls form an open covering of the separable metric space Y (1, &) € AC([ty, T], C).
The covering contains a locally open countable covering {U;};> depending on the pair
n,& € DQE. Furthermore, there is a locally open covering {V;};>; such that Vj c U,
j =1, where V_,« denotes the closure of the set V; (see [21] and [26, p. 159]).

Let {P;(-)};>1 be a continuous partition of unity subordinate to the covering {V;};>; and
let {g;(-)};>1 be the set of continuous functions such that

P U R A
G =11, i yye e V).

Suppose that A C [#, T'] is a measurable set and let
wi (ype) = inf{w € [10, T]: n(A N [to, w]) > w(A)gi(yne)},

DY (yye)[A] = AN [0, wi(yye)),
D, (yye)[A] := 19, T1\ @) (yye) [AL

The number c(A) and the sets c°[A], c'[A] are defined as follows:
c(A) =inf{c € 1, T1: n(A Ny, cl) = n(A)},
"[A] = ANt c(A)), c'[A] =11, T1\ "[A].
Next we define
To(Yne) = fo,

Tj(ype) = sup{t € [to, T]: w(AN[Tj—1(ype)s T S w(A)Pj(ype)},  j =1,
W (vee)[Al = AN 19, T1(ype)]s

and

W () [Al=AN (T 1(ye), Tj(pe)], > 1.

We fix arbitrary functions y,: ;(-) € V;, where y,e ;(-) = (n, y;(-)§), j = 1 for some y; € Y
and let © denotes the family of sets 6 = {@, 9D}ik=1 formed of number pairs (97, 9)
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in which the numbers take the value O or 1. The sets T/.1 (¥ne), j = 1 are defined as follows:

0 1
T ) = J W, (yna[ M) @ G T2 (e N [T,."(yﬂgm].

0e® k,i>1

The family of sets le (yye) thus defined, is a continuous decomposition of the interval [#y, T].
This can be shown exactly by the same way as in the proof of the only lemma in [26, p. 159]
satisfying the conclusion of Lemma 2.3 above.

3 Main Results

We shall establish the main results of this paper in this section. To this end, the proof of the
main theorem below adapts the technique employed in [26] in a way that is suitable for the
analysis of the present quantum stochastic differential inclusion. In what follows as before,
n, & is a pair of arbitrary elements in DQ [E.

Theorem 3.1 Assume that the map (t,x) — P(t,x)(n,&) satisfies conditions Si)—Si)-
Assume further that a non empty set M C wac(A) is given and there exist positive functions
One» Ny = [to, T1— Ry lying in L), ([to, T1,Ry) such that

d
d <E(na Y(t)$)7 P([! YU))(’LE)) =< ,Ong([),

and

d
‘E(r],Y(I)S) SN, telt,T], YeM.

Then for arbitrary € > 0, there exists amap R : M(n, €) — ST (P)(n, £) continuous in the
norm topology of the space AC([ty, T1, C) such that:

(1) R(ype () (10) = yne (t0)-
) R(yye () =y (), for yge € M(1.6) N ST (PY(, §).
(3) IRy (@) = yye O] <Epe(t) + €, t €10, T1, yye € M, 6)\ ST (P)(1, §).

Proof Let € > 0 be given. We define a sequence of real positive numbers that depend on
1§ by:

€
T 252 exp[2M, (T)]’

o k=0,1,2,.... 3.1

Then there exists a number oy = 0y (n, §) depending on 7, & such that

IS (O ol >
o , ———
0 3+ 4M,.(T)

and

/ Nye(0)dt < g (3.2)
A

for every measurable set A C [t, T'] satisfying £ (A) < oyp.
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As highlighted in Remark 2.4, we shall construct locally finite open coverings {U;}, {V;}
and function systems {P;(-)}, {g;(-)} and {y,z ;(-)} for j > 1. We first obtain a partition of
the interval [y, T'] into L equidistant points tp =19 < 7} <--- <71, =T where L > Ta;ot“.
By employing the notion of simple processes as defined in [18], we let W; be simple
processes in L }OC(A) having a countable number of values W;(¢) such that

WO llye = Wye, j ()] < Npe (1), t€[tg, T]

and

8(yne,j)

- 3.3
L (3.3)

(Vg () = We ;O <
where 8(y,¢) is defined under Remark 2.4, y,¢ ;(¢) = %)’néq.f (t),and | - |1 is the norm in the
space L' ([ty, T1, C) of integrable complex valued functions on the interval [z, T .

Let T; ;, be measurable subsets of [#y, T'] such that

W) =W, Wy =W, t€Ty, TuNT=0,i#i,

and Ui>| T = [to, T]. We put Tllk = [1, 71411 N T; x and follow a similar argument as in
the proof of the lemma in [26]. Employing the procedure under Remark 2.4, we construct,
for each fixed [, y,:(-) € M(n, &), the sets W; (y,e)[-], d>(,3(y,75)[‘], interchanging [y, 7] and
[/, T141]- Next define

0
Tiu(e) = J ¥ (W[ﬂ d>Z""<yng)[Ti{k]], (34)
o i k=1
and
L
T (ge) = T ) (3.5)
=1

As shown in [26], the family of sets {Tjo(yn;(-))} is a continuous decomposition of the
interval [#o, T'] depending in this case on the matrix element y, (-) of the process y € M.

If y € ST (P), then y € ST (a) for some a € A. Thus, by the properties of such solutions
as established in [13] (see also [7]), there exists a stochastic process V : [to, T] — A lying
in Ad(A),ee N L: (A) such that:

loc

y(t)=a —i—/ V(s)ds, ae.telty,T] (3.6)

fo

and for any y, € ST (a), we write
t
wi(t)=a +/ Vi(s)ds, ae.telty, T],
f0

for some stochastic process

Vi € Ad(A)yue N L}, (A).
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Next, we consider the following pair of mappings: go: M — L} (A) and Gy : M(n,€) —

loc
L} ([ty, T], C) defined by:

40) yeMnSD(P),
SMO=13" 00, OW;(), yeM\ST(P), (.7
Jj=1

where W; and V are given respectively by (3.3) and (3.6) above and

d
E(n,y(t)é), yie € M(n, &) N ST (P) (1, £),

Go(ype) (1) = (3.8)

D X0 OWa j(0). v € M. )\ ST (P)(. 6).

j=1

Notice that by definition, Go(yy¢) (#) = (, go(y)(1)§) where

d
2 Y8 =M, V(E),  telio, T].

We prove that the mapping Gy is continuous in the norm of AC([ty, T'], C) defined on
M(n.§).If yo € M\ S (P), then

T
1Goyne) = Gomenllur = | D K000 5195300 (D Nre (D)1
0 j=1
- 0’ as yné(') i yns.O(')~ (39)

Suppose that yo € ST(P) and y € M \ ST (P), then y,e0 € SD(P)(n,€) and y, €
M, &)\ ST (P)(n,€). By the property of the partition of unity P;(-), P;(y,e) > 0 im-
plies that y,: € V;. By the construction of the covering {V;}, there is a ball centred at
Ype € M(n,€)\ ST (P)(n, &) with radius

1
5(&?7%) = Ev(iné) (3.10)

containing an element of V;. Hence, for y,: € V;, [y)e — Ynelac < 3v(Fye). We conclude
that

V(¥ye) < V() + 1yne — Ynelac
|
=< v(yné) + Ev(yné)-

Hence

V(Fne) < 20(pe)- (3.11)

Estimating the distance between y,: and y,: ; € V;, we have

|yne — Yne.ilac < |yne — Vnelac + Ve j — Ynelac
< 28(yye)
<v(¥pe) by ((3.10)
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<2v(yy) by (3.11)
=< 2|ype.0 — Ynelac (3.12)

Inequality (3.12) holds since y, 0 € ST (P)(n, £). Thus

[Yne.0 = Yne.jlac < 1Vne0 — Ynelac + [yne — Yue,jlac
< 3|yye.0 — Yaelac (3.13)

by applying (3.12).
Assuming that zx € M \ ST (P) and z,¢x — yye.0 in AC([to, T],C) for k — oo, we
estimate the norm:

d
— 030 (0E) = D Xp0z, O W (D]dr. (3.14)

T
|Go(ye.0) — Go(Zpe.r)| =/ 7

fo

j=1

Let j* be such that ,u(TjO* (zne,x)) > 0, then from (3.14), we have

[l
0

—(n, y(1)E) =) X102y 0 (O Wi (1)

7 ‘ dt
izl

< Ti l—i (1
_A S 30008) — 0., (08)

d
+ ‘—(n, Vi (0)E) — Wye j=(1)

P )dt+Z/T% )|W,,§,j*(t) — Wye i ()|dt
P A

<5130e0() = 2k Olac + Y Pi(@ye ) Wae j+ () = Wae ;O
j=1

< R2|yye0() — zgek (lac (3.15)

by applying estimates (3.12) and (3.13).
Consequently,

[Go(¥ne,0) — Go(zyei) 1 < 12|ype0() — 2yex (Dlac. (3.16)
Thus, the map Gy : M (n, £) — L' ([, T1, C) is continuous.

Furthermore for y € M\ ST (P); y,e € M(n7, &)\ ST (P)(n, §) and by denoting the unit
ball in the complex field by S,, we have

T+1
f Go(yye) (0)dt =) / Wye i ()dt
T T:

i>1 Y Tj(me)
T+1
=Y P [ Wi
j=1 K
(o4}
€ D Pi0ne) e (@) = v s () + 575,
Jj=1
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Hence,

T+1 0o
/ Goyne) (1)t € Y Piye) e (Ti1) — e (t0)) + > 52
fo jzl

c Z Pji(yie) ne (Ti41) — yye (00)) + 0052
izl
= Ve (T1) — Ye (fo) + 0052 (3.17)
Equation (3.17) holds since the functions y,: ; lie in some neighbourhood of the func-

tion y,¢(-) and by using the relation ) ._, P;(y,s) = 1. Therefore for € [y, T'], we have
from (3.17),

j=1

Ve (f0) +/ Go(yye)(s)ds — ype (1)

0

< |ynetio) + / Golrye) (8)ds — ye ()| + | ye () + f Golye)($)ds — vy (1)
) i

<30y <. (3.18)

Now assume that u (T} (yye)) > 0, and 1 € T} (yyz), then by employing (3.18) we have:
d(Go(yns)(t), P(r, ¥(to) + / l go<y>(s>ds)<n, 5)>
- d(Wns,j(r), P(z, Vo) + f t go(yxs)ds)(m s))
<d<d n, y; &) + Wye ; (1) — d (n Y (D), P(t,yj(t))(n,$)>

+ ,O(P(t, yi() (1, €), P (t, y(to) + / go(y)(S)dS> (™, S))

o

d d
< d(EW yi(OE), P, y; (1)1, E)) Wye i (1) — (77 ¥j (;)g)’

+ Kﬂg(l)

yi@) —y(@®) +y@) — <y(to) +/ go(y)(S)dS)

0

né

d
- d(ﬁ’?v yi(OE), P(t,y; (1), S))

d
Wae 0= o n,; (r>s>]

+ Kpe (D1yne.j (1) = ype (O] + Ky (1)

Ve (t) — ype (to) — / Go(yye)(s)ds

0

d
< d(;(n, yi (&), P(z, yj(t))(n,$)>

d
Wie,j () — (77 yj(t)€>‘
+ Koye () yne, j (1) — ype ()] + 300K, () (by (3.18)) (3.19)

d
s d(E (n,y; &), P(t,y;(1))(n, 5)) + Boe (1), (3:20)

@ Springer



Topological Properties of Solution Sets of Lipschitzian Quantum 29

where

Bie(t) = 400Ky () + Y

j=1

d
77 1 ¥ (8) = Wae j (1)|. (3.21)

The estimate given by (3.20) holds by applying the inequality |y, ; () — ype ()| < op that
follows from (3.17). Again, by applying (3.2) and (3.3) to the expression in (3.21), we
conclude that

T
/ Bue(D)dt == Bz ()1 < . (3.22)
10

Next, we shall apply mathematical induction principles to establish a sequence of continu-
ous decomposition {T;‘ (Yye)}j=1, k =0 of the interval [#o, T'] corresponding to a stochastic
process y € M \ S (P) with the associated matrix element y,: € M(n, &) \ ST (P)(n, §).
In addition, we shall establish a sequence of mappings gx : M — L} . (A) with the associated
continuous sequence of maps Gy : M(n,§) — L ;DC([IO, T1, C), and sequences of functions
Cne k() Nye k(1) € L'([ty, T],R,) corresponding to arbitrary pair of elements 7, £, € DRE.

Notice that the decomposition {TJQ (yne)}, the mappings go, Go and the functions
Cne0(-) = Ppe (-) 4+ Bye () and Nyg o(-) = N, (+) hold as defined above.

By induction hypothesis, suppose that the decomposition {Tj" (ype)}, the mappings g, Gk
and the functions ¢z «(-) and N, x(-) have been constructed and let

Mwm=ﬂm+/gAWMﬂ,yeM%zO

Iy
and

Mmm=mw+/@mmM&%wa&kN (323)

fo

satisfy the following inequalities:

d(Gr(ype) (@), P, L(y)@)(1,8)) < Lper (D) (3.24)
and
|G (ne) @) < Nye ik (1), (3.25)

whent €[tg, T],y € M, y,e € M(n,&). Notice that (3.24) and (3.25) h91d for k = 0; More-
over, the maps I;(y) and Ji (y,) respectively lie in the spaces wac(A) and wac(A)(n, §)
and notice also the validity of the relation:

n, Ly (@)E) = T (ype) (@).

Then there exists a number oy € (0, 5 /;"“ ) such that
e (T)

/N (t)dt<L
L 6M,:(T) +4°

for all measurable sets A C [fy, T], for which p(A) < oyy;.

By applying Lemma 2.3 to the set M (n, £) \ S (P) (1, &), the continuous decomposition
{T/k (¥ne)} and the number oy, we construct a continuous decomposition {T;c+1 (ype)} and
the set of functions {y, ;(-)} C M(n,&) \ ST (P)(n,&). Such functions are of the form
e, j (1) =(n,y;(®)&),t € [ty, T] for some stochastic processes y; € wac(A).
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Since t — P(t,x)(n, &) is measurable with closed values (by assumptions Si—Sgi)),
then we can choose U, ;(-), j > 1, to be measurable selection from P (¢, I; (y;)(1))(n, &)
such that

[Ung.j (1) = Gi(yne. ) ) ()| = d(Gr(yye, ) (@0), P (2, L(y;)) () (0, §)), 1 €lto, T].

The existence of such selection follows from the classical Filippov lemma (see, for example,
Theorem 1.14.2 of [1]).

As the map (n,§) — Uy ;(¢t) is a sesquilinear form and by adaptedness of the
process y;, there exists an adapted stochastic process U; : [to, T] — A such that Uye i) =
(777 Uj(t)$>5t € [t05 T]

Again since

[Une,j (D] < [Une,j (1) = Gic(yne, O]+ 1Gr(ne,j) (D] = Ene (1) + Ny i (1), (3.26)

we conclude that Uy ; € L}nc([to, T],C). Hence, U; € Ad(A)yae N L}OC(A). Moreover, we
notice that the right hand side of (3.26) is independent of j. The inequality therefore holds
forall j > 1.

We now put Nyz x11(t) = ek (t) + Nyz £ (t) and define the following maps:

V), yeMNSTD(P),
St OO =13 sty OU; 0. yeM\STP), (327)
= !

where the process V (¢) is given by (3.6).
Associated with (3.27), we define the following map:

d

o, y(08), Ve € M(n,§) N ST(P)(1, §),
Gir1 () (1) = (3.28)
e 3 ket OV s O, 3y € M )\ ST (PYGLE).

j=1

Next, we establish some bounds: Let ,u(Tj"Jrl (yye)) > 0, then

[vne () = Yy, j (D ac < min{ogy1, v(ype)}.

Employing (3.23) and using the form of G, we have
[Tk (e, ) (1) — (e ) ()]

t
< |yr)fyj(') - yné(')|AC + / Z XTik(ynﬁj)ATik(yné)(s)NnE’k(s)ds' (329)

o j>1

Fort e Tf“ (yne) and by using (3.28), we have:
|G (Yye) (1) = Gra1 (ne) (@)
=Gk (ype)(#) — Upg, j ()]

< |Une,j (1) = Gi(yne, O] + 1Gr(yne, ) (1) = Gie(yye) ()]
=d(Gi(yne, ) @), P(t, I (y)) (@) (1, §)) + |G (e, j) (1) — Gie(yye) (0]
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= d(Gy(ype, ) (D), P, L(y)(©) (0, 6)) + p(P @, L(y)@)(n, ), P, I (y;) (1) (0, §))
+ G (g, ) () — Gi(yye) ()]

< d(Gi(yne) (), P(t, L) @) (1, 8)) + p(P(t, L(y) @) (1, &), P, L (y;)) (1) (n, §))
+ 2|G i (ne, ) (1) — Gie(yye) (1)

< d(Gi(yne) (@), P(t, L(y) @) (1, 8)) + Kye DI Ik () (@) — Le(y) (1) llne
+ 2|Gi(yye, ) (1) — Gi(yne) (1)

<d(Gr(ype) (@), P, I(y) (@) (1, §)) + Kyg DTk (pe) (1) — T (yye, j) (0]

+2>° X+ (1 e ) 7 ) () N 0. (3.30)

j=1
Furthermore, we have

d(Grr1(yne) (1), P, I () (1) (1. )
=d Uy, (1), P(t, It (y)(1)) (0. §))
= p(P, L (y)()(n,§), P(t, L (y)(®))(1,£))
< Kpe O (e ) (1) = T Q) ()] (3.3D)

Employing (3.20), (3.29) and (3.30), it follows that

/ |G 1(ype) (8) — Golyye) (s)lds
)

< / d(Go(yye)(s), Pt Io(y)(s))(n, §))ds + oy

fo

t
< / Pne ($)ds + o + oy (3.32)
fo
Again, by employing (3.29), (3.30) and (3.31), we have

/ (Gt (0e) (5) — G )(s)Ids
10

! 1 M, (T)+2
< / GO, P, L) )ds + e (g + W"j;(ﬁ)

< f A(Gr () (5, P (5. Teet ()(5)) (1, £))dls
1o

+/ p(P(s, I(y)($)) (1, ), P(s, -1 (y)($))(n, §))ds

v (L M +2
16 " 6M,(T) +4

5/ d(Gi(yne)(s), P(s, et (V) () (1, §))d's
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+/1K )T (e) (9) = Jeo1 () (9)lds + o (hM)
o T b 6 T oM (T) + 1

E/ Koe ()1 Tk (ye) () — Tkt (Ype) ($)1ds + cters. (3.33)
o

Continuing the iteration in (3.33) and using (3.32) and the relation

s

I e me) (8) — Je—1(yye) ($)] < f |Gk (yne) () — Gi—1 (yye) (u) |du

fo

by induction, we have

/ |G i1 (Yne) (8) — Gi(ype) (s)ds

pu (8)ds + a1

3 / (Mys (1) = My (5))*
=y k!

(Mng(t))ka + (Mng(t))kao

+ My (Toy + -+ + 0 i 0
t _ k k
< / (Mg 0 k,M”s O e (s)ds + 5+ 7(M"Ii‘(t)) o (3.34)
fo : !
Applying (3.29), (3.31), (3.34) and the Lipschitz condition, we have:
d(Gri1 (yye) @), P, Lyt () (@) (1, 8))
= d(Grr1(ye) (@), P (2, L(¥) (@) (1, ) + Ky (D] Ji1 (V) (1) — T (yne) (1)1
Qg1 T (Mye (1) — Mye (s)F € (Mg ()
EK'IE(I)(W;D_i_/I[) . 0 . Pns(s)ds‘f'ﬁ"'nki!ao
= Cne k1 (1) (3.35)

It is easy to see that the map ¢ x+1(-) lies in L'([ty, T],Ry).

Next we show that the map Gy : M(n,&) — L'([tp, T], C) is continuous. At a point
Yue.0 € M(7, E)\ ST (P)(n, &) where y,e 0(-) = (17, Yo(-)€) for some yo € M, estimate of the
form (3.9) holds showing that the map is continuous at the point. Suppose now that y,¢ o €
M@, EYNSD(PY(1, ), zgem € M0, E)\ ST (P)(n, &) and zy¢ = .0 as m — 00, then
for P;(zy¢,m) > 0 estimate of the form (3.13) holds, i.e.

[ Ve, 0() — yne, i (Dlac < 3lyne.0 — Znemlac-

Thus, by employing (3.29) and (3.30), conclusions of Lemma 2.3, continuity of the map G
and by putting y,z 0 = %yns,o(f), we have

[¥ne.0 = Grr1(Zne) |t = 1Grg1 (Ve.o) — Grr1 (Zygm) 11
< |)‘}7’]§,0 - Gk(zné,m”Ll + |Gk(ZnE$m) - Gk+l(ZnZ;'.m)|L1

— 0 asm — oo.

The map Gy is continuous. Therefore G, is continuous for all £ > 0.
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Let y,: € M(n,£). Summing of the inequalities in (3.34) and applying the definition
of ay, we have:

/ [Gry1(Yye)(8) — Go(ype) (s)lds
fo

' k
< / SXP(My (1) = My (5)) Py (9)ds + ) 50z +exp(Mye (1)t
v=0

0]

2¢ €
— +

< [ expc )~ My pors + 354 g

0]

< / SXP(Mye (1) = Mye () pre (s)ds + 5. (3.36)

0]

By employing (3.36) and (3.18), we obtain:

[Je1(pe) () — ype (D]
S k1 ye) @) = Jo(ype) (O] + [Jo(ye) (1) — ype (1)

t € €
< My (1) — M, BH ST rexp M)
< /,0 exp(M g (t) it () Py (5)ds + 5 4exp(2M,: (T))

<E,@) +e. (3.37)
Since

[ k1 (Vne) — Ji(ne)lac
T
= | kg1 (Ype) () — Jk (V) (t0)| +/ [8k+1(Vpe) () — g (pe) () Ids,  yye € M(n, §),
1o

then from (3.34), we conclude that the sequence of functions {Ji(y,s)} converges in
AC([t, T, C) to a function R(y,:) € AC([to, T1, C). Again by definition of the sequence
{1 (y)} in wac(A),

M, (M ®E) = Ji(yye) @), yeM

and
T a
[ (V) |ne = 1 (¥) (20) Il e +/ E(n, L(y)(®)§)|dt
10
T d
= |Jk (yye) (o) | +/ Ejk(yné)(t) dr.

Thus, by (3.34), the sequence {I(y)} is a Cauchy sequence in wac(A) which converges
to a map Y (y) € wac(A). Also (n, T(y)(1)&) = R(yy)(t). Hence R(y,e) € wac(A)(n, §).

The map R : M (n, &) — wac(A)(n, &) is continuous by the continuity of the sequence of
maps Gy. Also

R(yye) (t0) = ye (10,
R(yue)() = e, yoe € M, €) N ST (PY(n, §).
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Taking the limit in (3.37), we have

|R(yn§)(t)_yn§(t)|SEnE(t)+€a fG[lo, T]

Next, we show that Y (y) € ST (P). First we have:

d
d(g (n, T(N@®E), P, T(»)(®) (1, S))

d
= d(Gi1 (ype) (1), P (1, L (y) (1)) (1, §)) + ‘EW’ TW(0E) = Grg1 () (1)

+ Ky (D10, YW (0)E) — (0, L (y)(®)§)]. (3.38)

Applying (3.31) and (3.29) to the first term at the right hand side of (3.38) and integrate both
sides we have:

T rd
/d<E(n,T(y)(t)§),P(I,T(y)(l))(fl,é))
fo

T t
< / Ky () [Iyns,j —elac+ | D xn (W)Ml_k@n&)(s)N,,g,k(s)ds]dt
fo

0 jz1

T

d

+ f (‘d—m,m)(rm Gt () (0)
10 t

+ Ky (01, Y(y)(®)§) — (n, Ik(y)(t)$)|>dt

Trd
Sak+1+/ <
o

E(n’ TW(DE) = Grr1 (Yye) (1)

+ Ky (0 {n, T(y)@)E) — (n, Ik(y)(t)$)|>dl~
Taking the limit as k — oo, we have
d
d (E“” T @®E), P, T(y)(0)(, S)) =0.
Hence Y'(y) € ST (P) and therefore

(1, TMOE) = Ryye) () € STV (PY(, ). O

The following corollary furnishes a generalization of our previous result [7] concern-
ing the existence of a continuous selection from the multifunction (n, x&) — ST (x)(n, &)
without any restriction on the domain of the selection map.

Corollary 3.2 There exists a continuous map:

®: A®n, &) = wac(A) (1, &)
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such that for each x € A, d((n, x&)) € ST (x)(n, &) satisfying

D ((n, x08)) = (n, X ()§)

for each X € ST (xp).

Proof Let xy € Aandlet X € ST (xy). As in the proof of the last theorem, we can write

X () =x9 —I—/ Vo(s)ds, ae.telty, T]

fo

for some Vy € Ad(A) e N L}M.(ﬂ) which depends on X. We consider the following non-
empty set

M= {y € wac(A) : y(t) = yo +/ Vo(s)ds, yo € fl}.

fo

Notice that the process X € M. We apply Theorem 3.1 to the set

M@, &) ={n,y()§):yeM}
to obtain a continuous mapping R : M(y, &) — ST (P)(n, &) satisfying
R((n, X (&) = (n, X ()§).
Define the map ®(-) by
@((n, yo&)) = R((n, y(-)§)).
The map ®(-) is continuous on A(1, £) by the continuity of the map R and satisfies
((n, x08)) = (1, X ()€) € ST (x0) (0, §).

Since xj is arbitrary in A, the conclusion of the corollary follows. 0

The next result shows that if the map (¢, x) — P(t,x)(n, &) is mtegrably bounded then
the set of complex valued functions S (x()(n, &) for each x, € A is an absolute retract.
This is understood in the sense that every continuous map h : F — S(T)(xo)(n &) admits
a continuous extension & : H — ST (x0) (1, g) for any subset F = F C H and for any
separable metric space H where the restriction /| =

Corollary 3.3 In addition to conditions of Theorem 3.1, assume that there exists a
Sunction by (-) € L'([ty, T1,Ry) such that for every element Ve () € P(t,x)(n,&),t €
[to, T1, | Vye ()| < bye (t), then the set of functions ST (x0)(n, €) is an absolute retract.

Proof We consider the set of complex valued functions defined as follows:

M(1,8) = {yge () € wac(A) (1, ) : yye (t0) = Xz 0, |30 (D] < bye (1), 1 € [1, T1}.

It is obvious that the set S (xo)(n,&) C M(n, €). By applying Theorem 3.1, there ex-
ists a continuous map R : M (n, &) — ST (x0)(n, &) such that R(X,¢ (1)) = X, (), X, (1) €
ST (x0)(n, ), showing that ST (x)(n, &) is the retract of the set M (n, £). By convexity of
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the set M (n, &) in the space AC([ty, T], C) and by Theorem 5 in [22, p. 341], the set M (n, &)
is an absolute retract. Hence, the set S (xo) (5, £) is an absolute retract by Theorem 6 in
[22, p. 341]. O

Corollary 3.4 Subject to all the conditions of Corollary 3.3, the set ST (x)(n, &) is con-
tractible and locally contractible in itself. In addition, the set is locally and integrally con-
nected in an arbitrary dimension.

Proof Since the set ST (x)(n, £) is an absolute retract, then (by Theorem 3, p. 375, The-
orem 5, p. 377 in [22]), the set is contractible and locally contractible in itself. Again (by
Theorem 3, p. 376 in [22]) the set is locally and integrally connected in arbitrary dimension
for each pair n, £ e DQE. O
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ABSTRACT. The existence of solutions of Discontinuous Quantum Stochastic Differential Inclu-
sions (QSDI) with upper semicontinuous coeflicients is our concerned in this work. A non commu-
tative generalization of Kakutani-Fan fixed point theorem is established in the work. By employing

this result, the existence of solution of upper semicontinuous QSDI is established.

AMS (MOS) Subject Classification. 81525

1. INTRODUCTION

The problem of existence of solutions of Lipschitzian quantum stochastic differen-
tial inclusions of Hudson and Parthasarathy quantum stochastic calculus formulation
was established in [7]. The properties of these solution sets were established in [3] and
[4]. The quantum stochastic calculus is driven by quantum stochastic processes called
annihilation, creation and gauge arising from quantum field operators. The multival-
ued generalization of this non commutative stochastic differential equation is essential
in the applications of quantum control theory, quantum evolution inclusions[9] and

differential equation with discontinuous coefficients.

For a classical differential equation with discontinuous coefficients the existence
of solutions was established via a multivalued regularization procedure [2]. This
multivalued regularization is upper semicontinuous. The existence of solutions of
upper semicontinuous differential inclusions in the classical setting was established
by using Kakutani fixed point approach [6] which is a multivalued generalization of
Schauder fixed point theorem. The aim of this work is to establish this result in
our non commutative setting. However, this result does not naturally transcends to
our upper semicontinuous quantum stochastic differential inclusions. In this work we
shall first establish a form of Kakutani-Fan fixed point theorem and then employ it to
prove the existence of solution of our quantum stochastic differential inclusions. Hence
we extend the existence of solution results in the literatures on quantum stochastic

differential inclusions [7], [8] and [10] to discontinuous case.

Received December 13, 2011 1056-2176 $15.00 @Dynamic Publishers, Inc.



122 M. O. OGUNDIRAN AND E. O. AYOOLA

The work shall be arranged as follows; in section 2 we state the definitions and
notations while section 3 shall be for results on the fixed point theorem and existence
of solutions of upper semicontinuous quantum stochastic differential inclusions via

this fixed point theorem.

2. PRELIMINARIES

2.1. Notations and Definitions. In what follows, if U is a topological space, we

denote by clos(U), the collection of all non-empty closed subsets of U.

To each pair (D, H) consisting of a pre-Hilbert space D and its completion H,
we associate the set Lt (D, H) of all linear maps x from D into H, with the property
that the domain of the operator adjoint contains D. The members of L} (D, H) are
densely-defined linear operators on H which do not necessarily leave D invariant and
Li(D,H) is a linear space when equipped with the usual notions of addition and
scalar multiplication.

To H corresponds a Hilbert space I'(H) called the boson Fock space determined
by H. A natural dense subset of I'(H) consists of linear space generated by the set
of exponential vectors(Guichardet, [11]) in I'(H) of the form

e(f) = Q. ren

n=0
where ®° f =1 and ®" f is the n-fold tensor product of f with itself for n > 1.

In what follows, D is some pre-Hilbert space whose completion is R and v is a
fixed Hilbert. L2(Ry) (resp. L2([0,1)), resp. L2([t,00)) t € Ry) is the space of square
integrable y-valued maps on R, (resp. [0, ), resp. [t,00)).

The inner product of the Hilbert space R @ I'(L2(R4)) will be denoted by (-, -)
and || - || the norm induced by (-, -). Let E, E; and E*, ¢ > 0 be linear spaces generated
by the exponential vectors in Fock spaces I'(L2(R.)), I'(L2([0,t))) and T'(L2([t, 00)))

respectively;
A= LE(DRE, R @ (L2 (R4)))
Ay = L (DK, R @ (L2([0,1)))) @ I'
Al =T, ® LE(E', T(L2([t,)))), t >0

where ® denotes algebraic tensor product and I; (resp. I*) denotes the identity map
on R @ I(L2([0,1)))) (resp. T(L2([t,00)))), t > 0. For every 1,& € DE define

|| z ||777§:| (77a37€> |> M A

then the family of seminorms

{Il'- llne: . & € DRE}
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generates a topology 7, weak topology. The completion of the locally convex spaces
(A, 70), (Ay, 7)) and (Af,7,,) are respectively denoted by A, A, and A,

We define the Hausdorff topology on clos(A) as follows: For z € A, M, N €

clos(A) and 7, ¢ € DRQE, define
pﬁﬁ(M>N) = max(éng(/\/l,/\/’), 5775(/\/7/\/1))

where
Spe(MUN) = sup dye(z, N) and
reM
dye(z,N) = ylgﬁfv | 2=y e -

The Hausdorff topology which shall be employed in what follows, denoted by, 7,
is generated by the family of pseudometrics {p,e(-) : 17,6 € DQE}. Moreover, if

M € clos(A), then || M ||, is defined by

| M [lne= pye(M,{0});
for arbitrary n,& € DRE. For A, B € clos(C) and x € C, a complex number, define
dz,B) = inf |z —y|

d(A, B) =supd(z, B)

€A

and p(A, B) = max(0(A, B), (B, A)).

Then p is a metric on clos(C) and induces a metric topology on the space. Let I C R,.
A stochastic process indexed by I is an A-valued measurable map on I. A stochastic
process X is called adapted if X (t) € A, for each t € I. We write Ad(A) for the set
of all adapted stochastic processes indexed by I.

Definition 2.1. A member X of Ad(A) is called

(i) weakly absolutely continuous if the map t — (n, X (t)£), t € I is absolutely contin-
uous for arbitrary n, £ € DRQE

(ii) locally absolutely p-integrable if | X (-) ||7; is Lebesgue -measurable and integrable
on [0,t) C I for each t € I and arbitrary n, £ € DQE.

We denote by Ad(A)yqc (resp. LY (A)) the set of all weakly, absolutely continuous

(resp. locally absolutely p-integrable) members of Ad(.A).

oo

Stochastic integrators: Let L3,

(R+) [resp. L3 joc(R+)] be the linear space of
all measurable, locally bounded functions from Ry to 7 [resp. to B(y), the Banach
space of bounded endomorphisms of 7]. If f € L35,.(Ry) and m € L) ,,.(R4), then
7 f is the member of L .(R,) given by (7 f)(t) = w(t)f(t), t € R,.

~,loc
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For f € L?Y(]R)Jr and ™ € L%?(W)’ZOC(RJF); the annihilation, creation and gauge
operators, a(f),a*(f) and A(r) in L5(D, T'(L2(R)4)) respectively, are defined as:

a(fle(g) = (f. 9)rz2r,)e(9)

W (Flels) = ey + ) o=

Amlelg) = 7-e(e” ) loms

g€ LA(R):

For arbitrary f € L35,.(Ry) and m € LOBS(V)JOC(RJF), they give rise to the operator-

valued maps Ay, A} and A, defined by:

Ar(t) = alfxjo)
AF(t) = a™ (fxou)
A,T(t) = )\(ﬂ-X[O’t))

t € R,, where x; denotes the indicator function of the Borel set I C R,. The
maps Ay, A;{ and A, are stochastic processes, called annihilation, creation and gauge
processes, respectively, when their values are identified with their amplifications on
R @ T(L2(Ry)). These are the stochastic integrators in Hudson and Parthasarathy

[12] formulation of boson quantum stochastic integration.

For processes p, ¢, u,v € L} _(A), the quantum stochastic integral:

/ (p(5)dAs(s) + a(s)dAL(s) + u(s)dAT(5) + v(s)ds), to,t € R,

to

is interpreted in the sense of Hudson-Parthasarathy[12]. The definition of Quantum

stochastic differential Inclusions follows as in [7]. A relation of the form

dX(t) € E(t, X(t))dA:(t) + F(t, X (t))dA(t)
(2.1) + G(t, X (t))dAS (t) + H(t, X(t))dt almost all t € I
X(to) = 29

is called Quantum stochastic differential inclusions(QSDI) with coefficients F, F, G, H

and initial data (to,zo). Equation(2.1) is understood in the integral form:

X(t) € xo+ / (E(s, X (s))dAx(s) + F(s, X (s))dAy(s)

to

+G(s, X (s))dAS (s) + H(s, X (s))ds), t € I



QUANTUM STOCHASTIC DIFFERENTIAL INCLUSIONS 125

called a stochastic integral inclusion with coefficients F, F,G, H and initial data

(to, zo). An equivalent form of (2.1) has been established in [7], Theorem 6.2 as:

(E)(t, ) (0, &) = {1, pap()p(t, ©)€) < p(t, x) € E(t,x)}
wE)(t,x)(n,§) = {(n,vs(t)q(t, x)§) : q(t,x) € F(t,2)}
(0G)(t, 2)(n, ) = {(n, oa(t)ult, 2)) - u(t, r) € G(t,x)}
(2.2) P(t,2)(n, &) = (nE)(t, 2)(n, &) + (VF)(t, x)(n, §)
+ (0G)(t, x)(n, §) + H(t, x)(n, €)

H(t, x)(n,€) = {o(t, 2)(n, &) : v(-, X())
is a selection of H(-, X(:))V X € L2 _(A)}

loc

Then Problem (2.1) is equivalent to

d
—(n, X(t)&) e P(t, X (¢t )
03 (0. X)) € Pt X(0)(1.6)
X(to) = 29
for arbitrary n,¢ € DRE, almost all ¢ € I. Hence the existence of solution of (2.1)

implies the existence of solution of (2.3) and vice-versa. As explained in [7], for the

map P,
P(t, 2)(n, &) # P(t, (n, 2€))

for some complex-valued multifunction P defined on I x C for t € I , T € .2(, n,§ €
DRE.

Definition 2.2. Let D C A be a non-empty bounded subset of A. For each n,§ €
DRE, sup,ep || © ||le< 00. We define the diameter of D with respect to 1,¢ € DRQE

by,

diam.(D) = sup ||z —y [l
z,yeD

Definition 2.3. For arbitrary 7, ¢ € DQE, let

Bye={DCA: sup ||z —y < oo}
z,yeD

Then the map: ay¢ : B,e — Ry, defined by

ane(D) =1inf{d > 0: D admits a finite cover by sets of diameter < d}, D € B,

is called (Kuratowski-)measure of non compactness.

The following are properties of oy, established in [5]

Proposition 2.4. Suppose e : Bye — R, then
(a) aue(D) =0 if and only if D is compact
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(b) cue is a seminorm, that is; for A > 0,

pe(AD) =| A | ae(D) and aye(Dy + Dy) < ape(Dy) + a(Dy)

(¢) D1 C Dy implies

e (D1) < age(D2), aye(D1 U Do) = max{aye(Dy), ape(Da)}

(d) ape(coD) = aye(D).

(€) cue is continuous with respect to the Hausdorff distance; that is
| ae(D1) — e (Da) [ < pre(D1, Do)
or arvitrary n, & € DRI where
bit D®E wh

pne(Dn, Do) = max{ sup dye(x, D), sup dye(z, Dl)}, Dy, Dy C Bye
z€Dy xz€D2
Definition 2.5. (a) Let vy, vy, ..., v, be an affinely independent set of n + 1 points

in a vector space E. The convex hull
{SL’ S EII:ZAZ'UZ',O S )\Z S 1,2)\2 = 1}
i=0 i=0

is called (closed)n-simplex and is denoted by vgv; . ..v,. The points vy, vy, ..., v, are
called the vertices of the simplex. For 0 < k <nand 0 < iy < i3 < -+ <1 <mn,
the k-simplex v; v;, ...v;, is a subset of the n-simplex vovy ... v,; it is called a k-
dimensional face(or simply k-face) of vov; ... v,. In addition , if y = >, Av; we let
x(y) ={i: A >0}

(b) A real-valued function ¢ on A is lower (resp. upper) semicontinuous if the set
{z € A: ¢(x) <A} (resp. {z € A: ¢(z) > A}) is closed in A for each X € R. If
(@ is a convex set in a vector space then a real-valued function ¢ on @ is said to be
quasiconcave (resp. quasiconvex) if {x € Q : ¢(x) > A} (resp. {z € Q : ¢p(x) < A\}) is
convex for each A € R

(c) Let K be a non empty set, and ® : K — 25 a multifunction, an element z € K is
said to be a fixed point of ® if x € ®(z).

(d) Let @ be a convex set in a vector space X, A a non-empty subset of @) and
F : A — 29 a multivalued map. The family {F(z) : © € A} is said to be a
KKM covering for @ if

co{r:x € N} C UF(x)

zeN

for any finite set N C A
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2.2. Preliminary results. In the Locally convex spaces, Schauder-Tychonoff fixed
point theorem is the generalization of Schauder fixed point theorem on Banach
spaces[13]. For the case of multifunctions, Kakutani fixed point theorem is the multi-
valued analogue of Schauder fixed point theorem and Kakutani-Fan fixed point theo-
rem is the generalization of Schauder-Tychonoff theorem|1]. The following theorems

due to Knaster, Kuratowski and Mazurkiewicz (KKM) shall be employed.
Theorem 2.6. [1] Let {Fy, ..., F,} be a family of n+1 closed subsets of an n-simplex
VU1 - . . Uy Suppose that for each 0 < k <n and 0 < iy < iy < --- <1 <n we have
VipViy - - - Uy, QEOUFil UUEk
Then .
() #0
i=0

The infinite dimensional version of the KKM theorem, Theorem 2.1, above is:

Theorem 2.7. [1] Let Q be a convez set in A, N a non-empty subset of Q, F : N —
29 a multivalued map and {F(z) : x € N'} a KKM covering for Q. If there exists an

a € N with F(a) compact, then

() Fa) #0

zeN

The following is a non commutative analogue of the Ky Fan’s minimax theorem,
as established in[1]

Theorem 2.8. Let K # 0, convexr and compact subset in A and ¢ a real-valued

function on the product space K x K satisfying the following conditions;

(2.4) for each fivred x € K, ¢(x,-) is lower semicontinuous on K and

(2.5) for each fized y € K, ¢(-,y) is quasiconcave on K
Then there exists y* € K with

o(x,y*) <sup@(z,z) for allz € K
zeK

(and therefore minye i sup,cx ¢(z,y) < sup,cx ¢(z,x))

Proof. Let A = sup,cx ¢(x, x). We may assume that A # co. For each x € K let

Fz)={y € K:¢(z,y) <A}
condition 2.4 guarantees that each F'(x) is closed and hence compact in K (note that
K is compact). We claim that {F(z) : x € K} is a KKM covering for K. If the claim
is true then Theorem 2.2 guarantees that (), F'(x) # 0. Take y* € (),cx () and

the proof is concluded.
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To prove the claim . Suppose it is not true. Then there exists {zy,...,z,} C K
and a; >0 (i =0,1,...,n) with > ja; = 1 such that

w = Zaixi € (UF(x,))/

This together with the definition of F'(x) yields
(2.6) o(x;, Z a;x;) = ¢(x;,w) > A\, fori=0,1,...,n
i=0

Finally (2.4) together with the quasiconcavity of ¢(-, w) guarantees that ¢(w, w) > A,

a contradiction. O

In the following result, we shall employ the notation: (x,g) to denote the duality
pairing for each g € A’ and = € A

Theorem 2.9. Let X : [ — .Z, @ a non-empty subset of.Z and ® : Q — 29
be upper semicontinuous with ®(X(t)) non-empty and bounded for each X(t) €
Q. Then for any g € .Z’(dual), the map ¢, : Q — R, defined by ¢ (Y (t)) =
SUD x (pyea(y (1)) [1e(X (), 9) is upper semicontinuous in the sense of real-valued func-

tion.

Proof. Fix yy € Q. Let € > 0 be given and let
€
U= {X (1) € Q11 (X(0), ) I< 5}

Notice that U, is an open neighbourhood of 0. Since ®(yo) + U. is an open set
containing ®(yy), it follows from the upper semicontinuity of ® at yo that there exists
a neighbourhood N(yg) of yo in @ with

P(Y(t)) C P(yo) + Ue for all Y(t) € N(yo)
Thus for each Y (t) € N(yy) we have that
¢g(Y(t)) = sup  Re(X(t),9) <  sup  Re(X(t),g)

X(t)e@(Y (1) X (£)e®(yo)+Ue
< sup Re(X(t),9)+ sup Re(X(t),q)
X(t)e®(yo) X (t)eU.
< Pg(yo) + €
therefore ¢, is upper semicontinuous. O

The following separation theorem shall be employed in what follows:

Theorem 2.10. [1] Suppose that A and B are disjoint, non-empty, convex sets in A.
If in addition A is compact and B is closed, then there exist f :€ A" and v € R with

max Ref(A) < v <inf Ref(B)



QUANTUM STOCHASTIC DIFFERENTIAL INCLUSIONS 129

3. MAIN RESULTS

Theorem 3.1. Suppose K # (), K C A is a conver and compact subset of ./T, such
that the following conditions hold:

(i) X(t) is a stochastic process; X : I — A such that X (t) € K,Vt € I

(ii) The map ® : K — 2K is upper semicontinuous with respect to a pair n,¢ € DRQE,
with ®(X (t)) a non-empty closed and convex subset of K for each X(t) € K. Then
there ezists a y(t) € K with y(t) € (y(t)).

Proof. Suppose that the result is not true, that is suppose y(t) € ®(y(t)) for such
y(t) € K. Now for each y(t) € K, Theorem 2.4 guarantees that there exists fy) € A
with

(3.1) Re(y(t), fym) —  sup  Re(X(t), fyu) > 0.
X(HED(y(®)

For each g € A, let
Vig) ={y(t) € K: Re(y(t),g) — sup (X(t),g) >0}
X(t)ed(y(t))

We observe that (3.1) ensures that K = J,.z V(¢g). In addition Theorem 2.2 im-
plies that V(g) is open in K. The compactness of K guarantees the existence of
G1,G2s -, gn € A with K = Ui, V(gi). Let {A1,..., A} be a partition of unity on
K subordinate to the covering {V(g1),...,V(g.)} (let V; = V(g;) for i —1,...,n),
that is Aq,..., A\, are continuous non negative real valued functions on K with \;
vanishing on K \ V; for each i = 1,...,n and Y ", \;(X(¢)) = 1 for all X(t) € K.
Therefore K is a non-empty,convex and compact subset of A. Let p: K xK —R
be given by

P(X(),y(t)) = Z Aiy () Re(y(t) — X(2), 9:)

For each X(t) € K ¢(X(t),-) is lower semicontinuous on K and for each y(t) €
K, XA € R the set, {X(t) € K : ¢(X(f),y(t)) > A} is convex, then by Ky Fan’s

minimax theorem (Theorem 2.5), there exists yo € K with
S(X (1), y0) <0, for all X(t) € K

that is,

(3.2) i Ai(yo)Re(yo — X (t),9;) <0 for all X(t) € K

i=1
Suppose that i € {1,2,...,n} is such that A\;(yo) > 0. Then y; € V(g;) (since \;
vanishes on K \ V;) and consequently,

Re(yo, 9;) > sup  Re(X(t),g:) > Re(xo, gi)
X(t)e®(yo)
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for all g € ®(yp) (that is, Re(yo — o, g;) > 0 for all xg € ®(yp)). Thus \;(yo)Re{yo —
xo, g;) > 0 whenever \;(yg) > 0 (fori =1,...,n) for all zy € ®(yp). Since \;(yo) > 0
for at least one i € {1,2,...,n}, it follows that

Z Ai(yo) Re{yo — o, gi) > 0

i=1
for all xy € ®(yp). This contradicts (3.2). Therefore the conclusion of the theorem is
true. U

Theorem 3.2. Assume that the maps E, F,G,H € L} (I x .Z)mvs andP: I x A —

9sesq(DEE)? , a sesquilinear form wvalued map with closed and convex values such that

a) t— P(t, X(t))(n,€&) has a measurable selection,

(

(b) X — P(t X(t)(n, &) is upper semicontinuous,

(¢) p(P(t, X (£)(1,€),{0}) < (&) (14 | X [lye) on I x A with ¢ € Li, (1),
(d)

d) llrnT_)OJr Oéng (IP (It x B)(n, f)) < k(t)aye(B) on I, where P(I,; x B)(n,§) =

(P(t, X (¢ (t.X) €L, x B}, L, = [t — 7.t + 7| NI for B € B¢, 1,6 € DRE
and k € LlOC(I). Then the quantum stochastic differential inclusion

@, X(0)6) € B X(0)0,€) X(t5) = 0 ac. on ]

has a solution on I.

Proof. It v € Ad(A)yee N L2 (A), by (a), for an arbitrary pair of 7, € D®E,
P(-,v(-))(n,€) has a measurable selection. That is there exists wye(-) € P(-,v(-))(n,€),
such that ¢ — wye(t) is measurable. By (c) we find that there exists v (t) and
o (t) = c(t)(1 + 91(t)). Now we define K as:

K = {0 € Ad(B)aue 1 L (A) : 0(t0) = 0, [ 0(6) e v(0) and
Io(t) = o(s) lne<| | va(rhdr | ¥n.€ € DsE)

Also, since wpe(-) € P(-,v(-))(n,§), there exists w : I — A such that wie(+) =
(n,w(-)E), for arbitrary 1, ¢ € DQE. Let K C K be defined as

K ={u€K: there exist v(-) € Ad(A)yae N L2, (A), wye(-)
— (,w()6) € B, o)) 8),
3.3 with .0(0)€) = {0706 + [ wne(s)ds)
and a multivalued map G : K — K defined by
Gl0) = {u & Ad(A)uue 1 L2(A) : (0:0(06) = (.208) + [ cne)s,

wie(-) = (n,w()€) € P(-,0(-))(n, )Vng € DYE}.
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G maps K into itself, since for any u € G(v); (n,u(t)E) = (n, zo€) + f(f whe(8)ds,

u(0) = 20, || u(t) [l < 61 (¢) and
| [ty [Cwglsras

G (ut) — u(s))€)
| [ ntorts
<\/ )1+ | () )~ |
< / ba(r)dr |

K is bounded and weakly-equicontinuous, since for any v € K; v € Ad(A)yeeNLZ (A,
t,s € I, given € > 0, there exists 6 > 0 such that || v(t)—v(s) ||,;¢< € whenever | t—s |<

. The weak equicontinuity follows by setting § = & where A\ = max ¢[s 4 | 12(7) |.
Moreover let ayeo(-) = aye(-) for Ad(A)wac N L2 (A and B( ) ={v(t) :v € B},
then e o(B) = max; aye(B(t)) for B CC K. Let Koy = K, Kpyy = convG(K,,) for
n > 0and I?Oo = ﬂn>0 I?n Then (I?n) is a decreasing sequence of closed convex sets.
To show that Ko is compact. Let pre.n(t) = ome(Kn(t)) and Yoen(t) = cge(G(K)(1)).
Yue.n 15 absolutely continuous with v,¢,,(0) = 0 and for 0 <t — 7 <t <T', we have

o) = enlt = 7) < (L[ anele)dss (.00 € FCo0) )0 € R )

Using
/t wne(s)ds € TeonvP (1, x Uy, . Kn(s))(n,§) for 7 < 7,
we obtain -
Cenlt) < Kty R

almost everywhere, from condition (c¢) and therefore

d
E%ﬁ(t) < K(t)pn a.e.

by letting 79 — 0+, since K, is equicontinuous. But (convA)(t) = convA(t), then

puan(t) < / K (s)pu(s)ds

hence p,,(t) — 0 uniformly, since (p,) is decreasing. Consequently, e o(Kx) =

2 and convex. We

max; oe(Koo(t)) = 0 that is Ko is compact with respect to 7%
also have IA(OO # (), since we may pick v, € IA(n and proceed in the same way to
get v,, — vy for some subsequence, hence v, € IA(OO. Now, G : IA(OO — 2R \ 0
and has convex values. If (u,) C G(v) then the corresponding (w,) has a weakly

convergent subsequence. Hence G(v) is also compact, moreover G |g_ has closed
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graph, hence G |k is Upper semicontinuous and therefore G has a fixed point in K,

by Kakutani-Fan fixed point theorem (Theorem 3.1).

Let ¢ € Ko be a fixed point of G. Then ¢ € Ad(A)yqe N L2 (A) and
t
(1. 0(06) = (1.206) + [ wael5)ds
0
But, wye(+) € P(+, 0(+))(n,&). Therefore,

9 o(t)€) = (n,w(t)E) € Pl o(t)) (1, €)

dt
and ¢(ty) = xg, a.e. t € I. Hence the fixed point of G is a solution of the problem
Fn, X ()€) € P(t, X (1)) (n,€) X (to) = zo a.e. on I. O
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Abstract. By employing the non-commutative analoque of Leray-Schauder fixed point theorem, Arsela-
Ascoli theorem and Michael selection theorem, we establish the existence of solution of impulsive quantum
stochastic differential inclusions(IQSDI) in the framework of Hudson and Parthasarathy formulation of
quantum stochastic calculus. The result hold in an infinite dimensional locally convex space. Important
properties of these solutions are studied.
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1. Introduction

For well over a century, differential equations have been used in modeling the dynamics of changing
processes. A great deal of the modeling development has been accompanied by a rich theory for
differential equations. The dynamics of many evolving processes are subject to abrupt changes, such
as shocks, harvesting and natural disasters. These phenomena involve short-term perturbations from
continuous and smooth dynamics, whose duration is negligible in comparison with the duration of an
entire evolution. In models involving such perturbations, it is natural to assume these perturbations
act instantaneously or in the form of ”"impulses”. As a consequence, classical impulsive differential
equations have found application in modeling impulsive problems in physics, population dynamics,
ecology, biological systems, biotechnology, industrial robotics, pharmacokinetics, optimal control,
and so forth. Again, associated with this development, a classical theory of impulsive differential
equations has been given extensive attention. Much attention has also been devoted to modeling
natural phenomena with differential equations, both ordinary and functional, for which the part
governing the derivative(s) is not known as a single-valued function. Our consideration in this paper
concerns the establishment of a solution of impulsive quantum stochastic differential inclusions in
the framework of Hudson-Phathasarathy formulation of quantum stochastic calculus.

The plan for the rest of the paper is as follows: section 2 contains fundamental structures and
definitions that we use in the sequel. In section 3 we assemble some auxiliary results that are use
in establishing the main result. The main result concerning the existence of solution to impulsive
quantum stochastic differential inclusion is established in section 4.

2. Fundamental structures and definitions

In this section we state some fundamental structures and definition that will be use in the sequel.
Given a multifunction F : R™ — 28" a single valued map f : R™ — R" is a selection if f(x) €
F(z) VxeR.

(i) Upper and Lower Semi continuous Multivalued Maps: Let N C Aand I C R,. For arbitrary
n,§ € DRE, (t,x), (to,z0) € I x N and real numbers ¢,d, ¢ > 0, we define the map d ¢ :

*Corresponding author. Email: abimbolalatifat@yahoo.com
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(i)

(iii)

[I X ./\[] — RJr by
dn&((t, @), (fo, x0)) = max{|t — tol, |z — zollne}-

The following shall be employed in what follows. For arbitrary n,£ € DQE

"2((7775) = {xn,f = <T],.%’f>,$ € "Zl}

Byee(0) = {26 € A(n,€) : lzpel < e}

Bamg(to,l‘o) ={(t,z) € I x N dn,ﬁ((t’ ), (to, o)) < 577,6}-

Amapo: I xN — 25¢s4(DSE)” will be said to be upper semi continuous at a point (tg, zg) €
I x N, if for each pair ,£ € DQE and € > 0 there exists d, ¢ = 0y ¢((to, z0), €) > 0 such that

d)(tv 95)(777 5) - ¢(t0, 1'0)(777 f) + Bn,{,e(o)

on Bs, . (to, o). The map ¢ is said to be upper semi continuous if it is upper semi continuous
at every point (t,z) € I x N. Furthermore, for a sesquilinear formed valued map we define

Beo(0) = {¢(t,2)(n, &) € P(t,2)(n, &) = [o(t, 2)(1,€)] < €}

A sesquilinear form valued multifunction P : I x N' — 25¢s4(DBE)* wi]] be said to be upper
semi continuous at a point (tg,xg) € I x N if for every 1, € DRQE and € > 0 there exist
dne = 0pe((to, z0),€) > 0 such that

P(t, x)(n,€) C P(to, 20)(n,€) + Bp,e(0)

on Bs, . (to, o). The map PP is said to be upper semi continuous if it is upper semi continuous

at every point (t,z) € I x N. For arbitrary n,{ € DQE, let ® : I x A — 24 be a closed
multivalued map. For each pair (¢,z), (t,2) € I x A we define

dye((t,2), (¢, 2)) = max{|t — 1|, ||z — 2'[|¢}

Byes(to, zo) = {(t,x) € I x A: dye((to, o), (t,x))(n, &) < d} and

Breo(®(t,z)={ye A: inf — K|y <€)
e (@(t,x) = {y kegl(tvx)lly |lne <€}

Amap @ : IxN — 25¢51PFE)” wil] he said to be lower semi continuous at a point (fo, zo) € IX
N, with respect to the seminorm |[.||,¢ if for each pair n,{ € DQFE and € > 0 there exists §, ¢ =
dy.e((to, o), €) > 0 such that for each y, € ®(to,70), infycarr)lly — Yollpe <6 V ye
N, almost all te€land dye((t,2),(t,2")) < dye. If ® is lower semi continuous at every
point (tg, o) € I x N with respect to the seminorm |[.||,¢, then it will be said to be lower
semi continuous on I x N.

A sesquilinear form valued multifunction P : I x N/ — 25¢5a(PSE)* wil] be said to be lower
semi continuous at a point (tg, zg) € I X N, with respect to the seminorm ||.||,¢ if for every
n,¢ € DQE and € > 0 there exist 6, ¢ = 9, ¢((to, o), €) > 0 such that for each
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(vi)

(vii)

(viii)

89

yneo € Plto,xo)(n,€) infy cppa)lUneo — el < € ¥V y € N,almostall t €
I and  dye((t,2), (to, 20)) < g )

The space Pad(I, A)yee = {X : I — A : X is adapted and weakly absolutely continu-
ous everywhere except for some ¢; at which X (¢,") and X(tz), k=1,2,...,m exists and
X(t) = X(t)}.

For each pair n,¢ € DQE, we define the space of complex valued numbers associated with
(i) as Pad(l, A)wacne = {(n, ©(.)§) : @ € Pad(l, A)wac}-

On Pad(I, A)yac, we define a seminorm

[®llpne = sup{[|[®(¢)ll4e, t € I}, (2.0)

and denote by Pyqc(A) the completion of the locally convex space whose topology is gener-
ated by the seminorm in (2.0). B

Let E,F,G,H € L?OC(I X A)mus and (g, zo) be a fixed point of I x A. Then a relation of the
form

dX(t) € E(t, X (t))dA~(t) + F(t, X (t))dAs(t) + G(t, X (t))dAS (t) + H(t, 2(t))dt
for almost all t € I\{tx}}",

AX—y, = Ju(X (1)), t=tp,k=1,2,...,m (2.1)

X(to) = d(t),t € I

or equivalently

Clin X(00)] € P X(0)(0€) amost all t € T\{1e}fy,

<T,7 AXt:tk§> = <T,7 JkX(tk)£>7 t= tk? k= 17 27 -y T, (22)

(n’X(t0)§> = <77’ ¢(t)£>at €l,

where 0 =ty < t1 < tg < ... < tm < tm+1 = T,1 = [0,T], is called impulsive quan-
tum stochastic differential inclusions (IQSDI). Note: The map P : I x A — 25¢sa(DIE)°
is a multivalued sesquilinear form having non empty, compact values. X (o) € A, Jj, €
CAA), k=1,2...mAX|—, = X(t]) - X(t;), X(t;), X(t]) represent the left and
the right limit of X (¢).

For any process X : I — Aandanyte I, X(t)represents the history of the state from
previous time up to the present time ¢ , the map Jj characterize the jump of the solutions
at impulse points t;, k= 1,2, ..., m.

By solution of Impulsive quantum stochastic differential inclusion (2.1) or equivalently (2.2)
we mean a stochastic process ® : A — A lying in the space Pac(A) Nwac((ty, trs1), A),0 <
k < m, satisfying

d

[ @] € P(t, (1)) (n,§)  almost all t € J\[ti]y—

and the condition
AD|—y, = Jp(®(t,)) and @(0) = Xp.
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The following theorems shall be employ to prove our main result.

3. Theorems

THEOREM 3.1 Let U and U denote respectively the open and closed subsets of a convex set K of
A such that 0 € U and let N : U — K be a compact and semi continuous map. Then either

(i) The equation x = Nz has a solution in U or

(ii) There exists a point u € 0U such that u = ANu for some A € C such that ReX € (0,1) and
Im) € (0,1), where 6U is a boundary of U.

THEOREM 3.2 Let X : I — A be a stochastic process that satisfy the following conditions :
(i) For any arbitrary pair n,§ € DRE,

let K C A such that F : K — K is a compact map.

(ii) || f(x)|lpe < m for each x € X, f € F and m < oo.

(iii) For every e > 0 (depending on 0, &) there exist 0,¢ such that for every x,y € X,

d(z,y)(1,&) < dye.

Then,

(n, (f(x) = f(y))§) <e ¥V feF, zyeX
Next, we shall establish the a priori estimates on possible solutions of problem (2.1)-(2.2).

THEOREM 3.3  Suppose that the following hold for arbitrary pair n,§ € DRQE. (i) There exists a
continuous non-decreasing function ¢ : Ry — Ry and

p € LY(I,Ry)  such that [P(t,2)(n, &) < p(t)e(||X||y.e)

forae tel and zeA (3.3.1)
with
psds</ — k=1,...,m+1, 3.3.2
tho1 Ne_1ne P(u)
where
Noge = llzolln.e,
Nk—l,n,é = sSup HJk—l(x)Hn,E + Mj_o,
]| 7,6 €=My —2,My 2]
th—1
My_o = Fk_ll/ p(s)ds, for k=1,..,m+1, (3.3.3)
tr—2
and
Ty(2) / du >N, lel +1] (3.3.4)
1(z) = —, 2z2>N;_4 R ) . .3.
Ni1me B(u)
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Then, for each k =1,...,m + 1 there exists a constant My_1 ¢ such that

sup{[| X ()llne : € [trs tea]} < Mi—1me

for each solution X of the problem (2.1 - 2.2).

Proof. Let X be a possible solution of (2.2). Then X|jy,,j is a solution to

GXO9 EPEXO)0.6  almostall 1 [0,t1), X(0) = Xo.
Since
Clin XM < |5t X (),
we have
L1, X0 < PO X (Dge).  forae 1€ [0.n]

Let t* € [0, 1] such that

sup{[| X () ([ : £ € [0, 1]} = [ X () lIne}
then

L, X(0)6)

I X ®)lne)

From inequality (3.3.11), it follows that

< p(t) for a.e t€0,t1]).

d

e L xeel e
dt— S S.
/o oK (o) 5/0 pls)d

Using change of variable formula, we get

Xt llne gy - h
Py (X () ne) = /X H JEU)S / p(s)ds < / p(s)ds.

Given that ¢ : Ry — R, and p € L(I,R,) such that

[P, X) (0, &) < p)o (| X]]n.e),

we obtain that

(@) he <y ( | " pls)is)

Hence,

IX () e = sup{[IIX (®)llne : t € [0,t2]} < T </O 1p(8)d8> = Mo.

(3.3.5)

(3.3.7)

(3.3.8)

(3.3.9)

(3.3.10)

(3.3.11)

(3.3.12)

(3.3.13)
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Now X[, +,) is a solution to

d

$<U,X(t)§> e P(t, X(t)(n,€) almost all ¢ € [tq, 2]

AXli=t, = J(X(t1)).

Then

%\(mX(t)ﬁ)l < pM)o([[X@)ll5¢)  almost all

Let t* € [t1, t2] such that

SUup{[| X (8)[lne = ¢ € [t1, 2]} = [ X ()lne-

Then
d
aloxosl
at < p(p).
O X (#)Ine
From this inequality, it follows that
d
- —|{n, X
e Ll X(5)6)

5 wdsﬁ/tl pls)ds.

Proceeding as above we obtain

X@) g a b
Tyl X ()] = /N T < / p(s)ds < /

This yields

X()| = sup{|X ()] : £ € [ta,12]} < T3 ( / 2p<5>d5) = M.

Continuing this process and taken into account that X |[tm 7] is a solution to the problem,

d
dt

AXli=t,, = J(X(tm)),

then there exist a constant M, such that

T
sup{|| X (t)||ne : t € [tm,T]} < an{H (/t p(s)ds) = M,,.

t € [t1,ta].

—(n, X(t)§) € P(t, X(t))(n,§) almost all ¢ € [ty,, T

(3.3.14)

(3.3.16)

(3.3.17)

(3.3.18)

(3.3.19)

(3.3.20)

(3.3.21)

(3.3.22)

(3.3.23)
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Consequently for each X to (2.2), we have

IXllye < max{|Xollye, My_1:k=1,...,m+1}. (3.3.24)
|

THEOREM 3.4  Assume that the map P : (I x /Nl) —y 9sesq(DYE)” satisfies the following conditions :
(i) for each pair n,& € DRE,P(t,x)(n,§) is closed and convex in C.

(i) The map (t,x) — P(t,z)(n, ) is lower semi continuous on (I x A),

then there exists a continuous map f : (I x A) — sesq(D @ E)?

which is a selection of P(t,x)(n,§).

4. Main result

The following theorem furnish our main result.

THEOREM 4.1  Suppose that the following hypothesis are satisfied

(i) The map P : I x A — 25¢9PRE)” s sych that for each pair n,& € DRE, (t,z) € I x A, P(t,z)(n, &)
is closed and convex in C, the space of complex numbers.

(i) The map (t,x) — P(t,x)(n,€) is lower semi continuous and measurable on (I x A).

(iii) For every r > 0, there exists function hye, : I — R lying in L' (I,R.), such that |P(t,z)(n, €)| =
sup{|vpe| : vye € P(t, ) (1, €)} < hyer, forae te€l and z€A with ||z <7

Then the impulsive problem (2.1) -( 2.2) has a solution.

Proof. Let
[ PwaC(“Zl) — LEOC(A)
such that

f(x) e F(x) V y € Pyac(A).

Consider the single valued problem

%(n,X(t)@ =F(X@)n, &) telt#ty,k=12,..m
AX|i=t, = Ju(X(t;,))€ t=tpk=1,2....m (4.1)
X(0) = Xo

Let

N(X)(t)(n,€) = [[N(X)(#)llne = [{n, N(X)()&)| = <n,xo£>+/0 [(n, (E(t, X (t))dAx(t)+
F(t, X (t)dAs(t) + G(t,X(t))dA;r(t) + H(t, X (t))dt)§)| + Z (n, JL(X(t,))€),
0<tr<t
where

(E(t, X (8))dAx(t) + F(t, X (t))dAs(t) + G(t, X (t))dAg (t) + H(t, X (t))dt = P(t, X () (1, ).
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We now transform problem (4.1) into a fixed point problem by considering the operators

Nye(X)(t) = 0 + / f(x S I J(X(E)E). (4.2)

0<tr<t

We show that N, is compact for each pair 7, £ € DQE. That is

NX)() =0+ /t " E(t, X(1))dAx () + F(t, X (£))dAs(t)+

G(t, X(£)dAS (t) + H(t, X(t))dt + Y Ju(X
0<tp<t
N : Puue(A) = Puac(A).

Step 1 : N is continuous. Let {X,,} be a sequence such that X,, - X € Pwac(fl).

IN(Xa(6) = N(X ()l < / B (s, X () (. £) — P(s, X (5)) (1, )| ds
Y X)) — T (1) e

O<tp<t

T
< / IB(s, X () (1, €) — P(s, X (5))(1, €)|ds
0

+ o<t 1Tk (Xn(ty)) — Je(X (1))l (4.3)
Since P and Jg,k = 1,2,....,m are continuous, then
[N (Xn) = N(X))llne < [[P(t, Xn(s))(n,€) — P(t, X () (1, €)In.¢

+ 20t <t [T (Xn(ty)) = J(X(#;))] = 0 (4.5)
as n — oo which implies that N is continuous.

Step 2 : N maps bounded set into bounded sets in Pwac(fl). Let X € By = [ € Pyqc(A) :
l|z][ne < q] for arbitrary n,§ € D®E we have that

IN(X)lne < g,

since Ji, k = 1,...,m are continuous from assumption (iii), we have

V(X (1))

/\PtX( NonElds+ 3 [(XE)),

O<trp<t

< 1 Xollne + lhqll L + D25y 1k (2 (ty)

Step 3 : N maps bounded set into equicontinuous sets of Pwac(A). Let ri,rp,€ [ and let B, = [X €
Puac(A) || X|[ne < q] be a bounded set of Pyqc(A). Then

(4.6)

INCOrD) = NEOEDle < [ hlo)lds+ 3 1ialt)lne (47)

0<tp<ra—ry

Trans. of the Nigerian Association of Mathematical Physics, Vol. 6 (Jan., 2018) 94



.. stochastic differential inclusion Abimbola € Ayoola Trans. of NAMP

As ro — 71, the right hand side of the above inequality tends to zero. This established the equicon-
tinuity of the case where t # t;,1 = 1,2, ....,m. To examine equicontinuity at ¢ = t; we have

IN(X)(r2) = N(X)(r1)lln.e < [P(rz, Xn(s))(n,€) = P(r1, X(s))(n,€)|ds
D IeXa(t) = Te(X () el Xolln.e

o<tp<t

+ [ 1P = 5, X)) — B — 5, X(5)) (0.l
+ > R(Xa(ty)) = Te(X () lne(B(X (s))|ds

O<tr<t

+/”mm_&xwmmm&mmM%
+/0T1 P(ro — 5, X(5))(1n,&) —P(r1 — s, X(s))(n,§)|¢q(s)ds
+/” P(ro — s, X(s))(n,€)|

+ Y Te[P(ra — tr, X(s)) — P(r1 — tg, X(s))]. (4.8)

r1<0<rs

The right hand side of (4.8) tends to zero as ro —r; — 0. To show equicontinuity at the left limit
t =t, fix 01 > 0 such that [t;, : k # 4] N [t; — 1,¢ + 61] = 0. For 0 < h < d1, we have

IN(X)(t:) = N(X)(t:i = h)| < [P((t:, X (5)) (0, &) = P((ti — h, X(5)) (0, [ Xol|n.c
ti—h

[P(ti — s, X(s))(n, &) = P(ts — h — 5, X(s5))(n,§)[(B(X(s))|ds
[P(ti — R, X(5))(n, E)|(B(z(s))lds
[P(ti — s, X(s)) = P(ti — h — s, X(s))[(B(X(s))|ds

[Pt —i—s,X(s))(n, OI(B(X(s))|ds

ti—h
+A [P(ti — h — 5, X(5))] 6q(s)ds

-1

+ D [P(ti — h — tr, X (5)) — P(ti — tes, X ()] Je(X ()

k=1

To show equicontinuity at the right limit ¢ = t:, fix 62 > 0 such that [ty : k # i|N[t; — da, ti+ 2] = 0.
For 0 < h < d2, we have
IN(2)(t; + h) = N (@) (t:)] < [[P(t: + h, X (5) = P(ti, X (5))]| Xollp.e + Jo' [Pt + 7 — 5, X (5))—
P(t; — 5, X ()| (B(X(s))|ds + [ " [P(t; — b, X (s))|(B(X(s))|ds + fy' [P(t: +h s, X (s))
Bt — 5, X(5))|6g()ds] + 1 IB(t: — by X(5))(9g()|d5 + gy, Bt — o — 1)~
Pt =ty X ()] + Xt crp <,y P(t = B — th, X (8)) (X (8]))]- (4.9)
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The right hand tends to zero as h — 0. Set

U=[X € Puac(A) : ||z]

Py.. <max[Xo, Mg_1:k=1,....,m+1].

wac —

As a consequence of steps 1,2 and 3, we can conclude that
N:U— Pwac(./i)

is compact. From the choice of U there is no y € dU such that x = ANz for any A € C such that
ReX € (0,1) and ImA € (0,1) As a result , we deduce that N has a fixed point x € U which is a
solution to problem (2.1 - 1.2). |
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1. Introduction

This paper is concerned with the establishment of the existence
of continuous selections for a non-commutative multivalued stochastic
process in the problem of existence of solutions of differential inclusions.
The problem concerned can be reduced to an ordinary differential equation
such that its right hand side consists of a selection of the multifunction. The
celebrated Michael selection theorem established the existence of a
continuous selection. Each selection strategy depends on the topological
property of the domain of definition of the multifunction and the regularity
property of the multifunction itself [1, 9].

In [5], the existence of solutions of hypermaximal monotone guantum
stochastic differential inclusions was established via the unique adapted limit
of the Yosida approximations of the multifunction. The result was later
generalized to non-linear quantum stochastic evolution inclusions

%(n, X(1)g) e —P(t, X(t)(n, &)+ (n, p(H)),

(M, X(0)&) = (n, xo&) foralmostall t € [0, T]

in [6], where P is a hypermaximal monotone multifunction and p is
continuous. In this work, we established the existence of a solution for a
more general case

L0 XO2) < Bt XO)(n, 2)+ Ot X(O)(n, &)

(m, X(0)&) = (n, xg&) foralmostall t [0, T},

where @ is a lower semicontinuous multivalued stochastic process. It is
worthy of note that the stochastic differential inclusion is driven by operator-
valued stochastic processes which are annihilation, creation and gauge
processes arising from quantum field operator as in Hudson and
Parthasarathy formulation of quantum stochastic calculus [8]. The existence
of the continuous selection in this work is guaranteed by the pseudometric
property of the domain which implies its paracompactness. The remaining
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sections are arranged as follows: in Section 2, notation and definitions are
stated while Section 3 is meant for the main results.

2. Preliminaries

In this section, we shall introduce the notation and definitions on
guantum stochastic differential inclusions as applicable in subsequent
sections.

2.1. Notation and Definitions

Let D be some pre-Hilbert space whose completion is R; y be a fixed

Hilbert and Li(]&) be the space of square integrable y-valued maps on R, .

The inner product of the Hilbert space R ® F(Li(}&)) will be denoted
by (-, -) and | -|| the norm induced by (., -).

Let E be a linear space generated by the exponential vectors in Fock
space F(L$ (R, )). We define the locally convex space .A of non-commutative
stochastic processes whose topology t,, is generated by the family of
seminorms {| x| =[(n, x&)|, x e A, m, £ e D ® E}. The completion of
(A, 1) is denoted by A. The underlying elements of A consist of linear

maps from D ® E into R ® F(L%(RQ) having domains of their adjoints

containing D ® E. For a fixed Hilbert space vy, the spaces Ll%c(;l),

L7 10c(R,) and L (I x A) are adopted as in [4].

loc
For a topological space A/, let clos(N') be the collection of all non-
empty closed subsets of A; we shall employ the Hausdorff topology on
cIos(]i) as defined in [4]. Moreover, for A, B e clos(C) and x e C, a

complex number, we define the Hausdorff distance, p(A, B) as

d(x, B)=inf |x—-vy|, &(A B)=supd(x, B)
yeB xeA
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and
p(A, B) = max(3(A, B), 8(B, A)).
Then p is a metric on clos(C) and induces a metric topology on the space.

By a multivalued stochastic process indexed by |1 =[0, T] < R,, we

mean a multifunction on I with values in clos(A).

If @ is a multivalued stochastic process indexed by | < R,, then a
selection of @ is a stochastic process X : 1 — A with the property that
X(t) € ®(t) foralmostall t e I.

A multivalued stochastic process @ will be called

(i) adapted if @(t) ;lt for each t € R,; (ii) measurable if t —

dpe(x, @(t)) is measurable for arbitrary x e A, n, & € D ® E; (iii) locally

absolutely p-integrable if t || cD(t)||n§, teR,, liesin LP (ﬂ) for

loc
arbitrary n, £ e D ® E.

The set of all absolutely p-integrable multivalued stochastic processes
will be denoted by LP (A),s and for p e (0, ), LP.(I x A)y, is the

set of maps @ : I x A clos(;l) such that t > @(t, X(t)), te |l liesin
LP (A)pys forevery X e LP (A).

Consider multivalued stochastic processes E, F, G, H e Ll‘;c(l X;l)mvs

and (0, xg) be a fixed pointin [0, T]x A. Then, a relation of the form
t
X(t) e xg + ,[o(E(S’ X(s))dA(s) + F(s, X(s))dAf (s)

+G(s, X(s))dAJ(s) + H(s, X(s))ds, te[0,T])

will be called a stochastic integral inclusion with coefficients E, F, G and H.
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The stochastic differential inclusion corresponding to the integral
inclusion above is

dX(t) € E(t, X(t))dA(t) + F(t, X(t))dAs (t)
+G(t, X(1)dAg(t) + H(t, X(t))dt,
X(0) = xg foralmostall t € [0, T]. (2.1)

~ 2
Let P:[0, T]x A — 2%9P8E) 1o sesquilinear form valued stochastic

process defined in [4] in terms of E, F, G, H by using the matrix elements in
Hudson and Parthasarathy quantum stochastic calculus [8], it was established
that problem (2.1) is equivalent to

%m X (1)) e P(t, X(1))(n, &),

(m, X(0)&) = (n, xp&) foralmostall t [0, T]. (2.2)

In what follows, if U is a topological space, we denote by clos(U), the
collection of all non-empty closed subsets of U.

As explained in [4], the map P cannot in general be written in the form:
B(t, )(n, &) = B(t, (n, x€))

for some complex-valued multifunction P defined on | xC for te I,

XE;L N, &eD®E.

2.2. Lower semicontinuous and hypermaximal monotone multifunctions

Let S — A. Then a multivalued stochastic process @ : S — 24 is said
to be lower semicontinuous (I.s.c.) if for every closed subset C of ;l the set
{seS:d(s)c C}isclosedinS.

For an arbitrary n, § € D ® E, a sesquilinear form valued map ¥ : S —

2
25esaDOE)" il pe said to be lower semicontinuous if for every closed
subset C of C theset {s € S: ¥(s)(n, &) = C} isclosed in S.
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The following proposition is an obvious implication of the definitions
above.

Proposition 2.1. Assume that the following holds:

(i) The coefficients E, F, G, H belong to the space L|20C(I X ﬂ)mvs.

(i) E, F, G, H are lower semicontinuous on | x Al
Then, the map (t, x) = P(t, x)(n, &) is lower semicontinuous on | x A.

Hence we shall be considering the sesquilinear form in the sequel.

Suppose P: A — 25esgDOE) s 5 multifunction; the domain of P;
D(P) = {x e A: P(x)(n, &) = @}; range of P; range(P) = Uxe;l P(x)(n, &);
graph of P; graph(P) = {(x, y) € AxC: y e P(x)(n, &)}

We shall adopt the definition of hypermaximal monotone multifunction

for regular multifunction Reg(;lo) in [5].
(Monotone multifunctions)
A sesquilinear form valued map P is said to be

(i) Monotone if
Re(((a-b)(n ®E), Dy (X ¥))z)) 2 0
and ae P, g(x)®L bePR, g(y)®L x, yeDP), and n, EeD ® E,
with n=u®e(a), E=v®eP), o pelygR;), U veD

(ii) Maximal monotone if the graph of P is not properly contained in the

graph of any other monotone member of Reg(]i)o.

(iif) Hypermaximal monotone if P is maximal monotone and

(a) the range of the map

X id3(x) ®1+ Pyg(x) ®1,  x e D(P), a, B e Ly joc(Ry)
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isall of A ®1 and
(b) (idz()+ Py ®1)‘1, a, Be L?|OC(R+) is a continuous single-

valued map from A®1to D(P). id (") is the identity map on Al

IP generates a strongly continuous semigroup of contractions {S(t):t >0}

on D(P).

Then, for all x, y e D(P) and t, s >0, the following conditions are

satisfied:
(i) S(t+s)x=S(t)S(s)x, (ii) S(0)x = x, (iii) T +> S(t)x is continuous,

(V) [SM)x =Sy e <[ %=yl forarbitrary n, £ e D @ E. (2.3)

In [5], it was established that if E, F, G and H are hypermaximal
monotone, then P is hypermaximal monotone. Let s > 0 be fixed. Consider
the initial value stochastic differential inclusion

dX (t) € —(E(t, X(t)dAL(t) + F(t, X (t))dAs (t)
+G(t, X(1))dAg(t) + H(t, X(t)dt) + p(t)dt
for almost all t < (s, T],
X(s) = xg for some xg € A (2.4)
which is equivalent to the differential inclusion
& X)) € Pt X(O)n, £) + {n, PO
(. X(s)&) = (n, xs&) for almostall t e (s, T], (25)

nEeD®E, withn=u®ea), E=v®eP), a Belyc(Ry) uv
e D.
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In Ekhaguere [5], the case corresponding to p = 0 was considered and it

was shown that problem (2.5) has a unique adapted solution. This same
condition applies also to any non-zero p € C([s, T], D ® E) which was

considered in Ekhaguere [6].

Suppose that problem (2.5) has a unique adapted solution ¢. We may
interpret (2.5) as describing a system whose state at time s is ¢(s) = Xs,

while @(t) is the state of the system at some later time t > s. We say that the
system has evolved from the state ¢(s) to the state o(t), t>s. This
transition may be described by means of transformation U(t, s) which

moves ¢(s) to o(t) thus:
U(t, s)o(s) = o(t), t=>s.

A map U from the set {(t, s) e RZ : 0 < s <t <T} to the set of all operators

on A is called an evolution operator if it satisfies
() U(s, s)e(s) = ¢(s);
(i) U(t, r)U(r, s)o(s) = U(t, s)o(s) for s <r <t.

It was shown in Ekhaguere [6], that by uniqueness of the solution of
problem (2.5), these conditions, called evolution conditions, are satisfied.

Moreover, the contraction condition

Ut s)xo —U(t $)Yo lle <l %0 — Yol Vse(0,T],

X0, Yoe A, Vs<t<T, ntcD®E
was shown to be satisfied.

The family of multifunctions {P(t, -); t € [0, T]} is called the generator
of the evolution operator, U(:, -), D(P(t, 1)) = {x € A: P(t, x)(n, &) = T}.
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Consider the initial value problem

d

G X)) € ~Pt, X)) (M, &) + (. p(H)E),

(m, X(0)&) = (n, %p&) foralmostall t [0, T]. (2.6)

By a solution of (2.6), we mean a unique adapted solution ¢ such that

&(n 0)E) < B, o) (n, &)+ (n, p)E).

- 2
Given a multifunction @ : [0, T]x D(P(t, -)) — 259 P2E) and x, <

D(P(t, -)), we consider the initial value problem
L XM)E) € Bt XW)(, &)+ dlt, XO)(n, &)

(n, X(0)&) = (n, %p&) foralmostall t € [0, T]. (2.7)

By a solution of the problem (2.7), we mean an adapted weakly absolutely
continuous function ¢ : [0, T] — D(P(t, -)) with the property that there
exists p e C([0, T], sesq(D ® E)) such that

(M, p(t)&) € O(t, 9(t))(n, &) foranarbitrary n, Ec D ® E, ae. t [0, T]
and ¢ is a solution of problem (2.6).

3. Main Results

Proposition 3.1. Assume that the following holds:

(i) For arbitrary n, £ e D ® E, the map (t, X) > G(t, x)(n, &) is

lower semicontinuous with respect to a seminorm |- . ;
(i) g: 1 x A sesq(D ® E) is continuous, and

(iif) € : A — R, is lower semicontinuous.
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Then the map (t, x) —> ®(t, x)(n, &) defined by
o(t, X)(n, €) = By (9(t, X)(n, €))[)G(t x)(n, &)
is lower semicontinuous with respect to the seminorm ||| on its domain.
Proof. Fix (t*, x") in Dom®, yy: € ®(t", x")(n, &) and © > 0. For
some >0, | ype — 9(t", x")(n, &) | = &e(x") - o.

There exists 8; such that to any (t, x) e | x A with dye ((t, x), (£, X))
< &, we can associate y(t, x)(n, &) in G(t, x)(n, &) so that

[ Yne, %) = Yne | < mi”{‘”y %}
and 8, such that
dne((t, x), (£, x")) < 8,
implies
§(x) > 6(x") - 3
and 85 such that
dne((t, %), (£, x7)) < 83
implies | g(t", x")(n, ) - gt )(n, &) | < 5.
Then when d. ((t, x), (t*, X)) < min{8y, 5,, 83},
[y(t, ¥)(n, &) - g(t, x)(n, &)|
<[ y(t, )M, &) = Yne [+ yne =9, x)(n, &) |

+9(t", x)(n. &) - g(t. x)(n, &) |
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(¢

3

(¢

< 3

+e(x)—o+

= g(x*) _% < &(x),
that is, y(t, x)(n, &) € ®(t, x)(n, &) and

|y (t, x)(n, &) - y(t, X)(n, &) | < .

Proposition 3.2. For an arbitrary n, &€ D ® E, suppose a map

(t, x) > @(t, x)(n, &) is convex and lower semicontinuous.
Then, for every ¢ > 0, there exists a (jointly) continuous map,
¢l ><Zt—>sesq([[D@E)2
such that for (7, §) € 1 x A, d(o(x, £)(n, &), B(x, £)(n, &) < &
Proof. For every (t, x)e | x A, et Yt,x) € @t x)(n, &) and let
S(t,x) > 0 be such that (y, x) +B;) N @, X)(n, &) =@ for (t', x') e
Bnﬁ,S(t,x)(t' X).

Since | x A is paracompact, there exists a locally finite refinement

U )} x) € 1 %A of Bue 5 & Wt )
Let {m, () (n, &)}(t’ x) be apartition of unity subordinate to it.
The mapping ¢ : | x A > sesq(D ® E) given by
o(t, O (N, &) = D mt, (T )Y, (M &)

is continuous since it is a locally finite sum of continuous functions.

Fix (1, £). Whenever
| 71, x)(w O 8) >0, (v, &) € Ut x) < B, 5, (t %),

hence y(;, y) € ®(1, £)(n, &) + Bg.
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Since this latter set is convex, any convex combination of such Yt,x) 'S

in particular, o(t, ¢) belongs to it.
o(t, C)(M, &) € D(1, £)(n, &) + B, implies for any n, £ e D ® E, we
have d(o(t, §)(n, &), (7, §)(n, &) < &

The following theorem is a non-commutative generalization of Michael
selection theorems [9], Theorem 1.11.1 [1].

~ 2
Theorem 3.1. Suppose that ¥ : | x A — 25eSIPEE) js o myltivalued
stochastic process such that for arbitrary elements n, £ € D ® E,

(i) (t, x) > P(t, x)(n, &) is lower semicontinuous with respect to a
seminorm |- .;

(ii) W is closed and convex valued.

Then there exists v : | x A - sesq(D ® E)Z, a continuous selection from
Y.

Proof. The proof shall be in steps:
We claim that we can define a sequence {w,} of continuous mappings

from | x A into sesq(D ® E) with the following properties:

(i) foreach (1, y) e I x A, 0, e D ® E,
d(yn(r V(0. &), ¥(x, 1)(n, &) < Zi n=12.;
(ii) for each (t, y) e I x A, m, £ D ® E,

[¥ale L&)~ D G < g =2

For n =1, it is enough to take in Proposition 3.1 above ® =¥ and

1
L
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Assume we have defined mappings , satisfying (i) up to n =v. We
shall define v, 1 satisfying (i) and (ii) as follows.

Consider the set

O(z, 7)(n, &) = (wy(x ), &)+ B 1 )[ ¥ v)(n, &)
2V
By (i), it is not empty, and it is a convex set. The map (1, y)—

®(t, v)(n, &) is lower semicontinuous, by Propositions 3.1 and 3.2, there

exists a continuous ¢ such that d(o(t, x)(n, &), @(t, X)(n, §)) <

2V+1 '

Set

Yyt v)(M, &) = oft, v)(n, &).

Hence d(y.1(t, vY)(n, €), P(t, v)(n, €)) <

V1+1 proving (i). Also,
2

Yyt Y)(n, &) € (x, )(n, §) + B

2v+l

< vy (@ 1) z;)+(1 oL js,

2_V 2V+1
that is;

| Wyar(n Y)(M, &) —wy(t v)(n, &) | <

2V—1
proving (ii).

Since the series Zin converges, {y,(-)(n, &)} is a Cauchy sequence,
2

uniformly converging to a continuous map w(-)(n, &).

Since the values of ¥ are closed, by (i) above, v is a selection of V.

Corollary 3.1. Suppose the following holds:
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~ 2
(i) The map P: [0, T]x A — 25¢9PEE)" js 4 hypermaximal monotone

multifunction.

N 2
(i) @:[0, T]x D(P(t, -)) — 2%9PEE) s a Jower semicontinuous
multifunction with closed non-empty convex values.

Then there exists a solution for a non-linear evolution inclusion

8 n X(02) € B, X)), &)+ @(t, X(O)(n, &)

(M, X(0)€) = (n, xo&). (3.1)

Proof. Since @ satisfies the hypotheses of Theorem 3.1, there exists a
continuous selection p e C([0, T], sesq(D ® [E)) such that

(n, p(t)g) € O(t, o(t))(n, &) foranarbitrary n, E e D ® E, ae. t [0, T].

By [6], there exists a solution for (2.6). Suppose ¢ is such solution. Then
¢ is a solution of (3.1).

Remark 3.1. The result is applicable in Quantum Physics. If a quantum
system evolves from a state space to another over a period of time such that
there is continuous creation, annihilation and gauge. The inclusions
describing the stochastic evolutions of the quantum system can be solved via
the result in this work.
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Abstract. In the framework of the Hudson - Parthasarathy quantum stochastic calculus, we
employ some recent selection results to prove that the function space of the matrix elements of

solutions to quantum stochastic differential inclusion (QSDI) is arcwise connected both locally
and globally.

1. Introduction

This paper considers Quantum Stochastic Differential Inclusion(QSDI) in the framework of
the Hudson and Parthasarathy formulation [11] of Quantum Stochastic Calculus. It has
found applications in the study of quantum stochastic control theory [13] and often occurs
as regularization of quantum stochastic differential equations with discontinuous coefficients.
In [3,4,8,9] some topological properties of solution sets of QSDI have been achieved. These were
subject to some conditions on the coefficients of their inclusions.

There are some of the interesting motivations [1,2,13,14,15] for studying connectedness, path
connectedness and arcwise connectedness of solution sets in the classical differential inclusions
with their applications.This provides the possibility of moving from one solution to another.
However as established in [1, 14, 15] for the case of differential inclusions on finite dimensional
Euclidian spaces, this work concerns the establishment of arcwise connectedness of solution sets

of quantum stochastic differential inclusion in the integral form:
¢
X(t) € a+ / (E(s,X(s))d Ax (s) + F(s,X(s))dAy(s)
0
+ G(s, X (s))dA] (s) + H(S,X(s))ds) , almost all ¢€[0,7]. (1.1)

In equation (1.1), the coefficients {E, F,G,H} lie in a certain class of stochastic processes

for which quantum stochastic integrals against the guage, creation and annihilation processes
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BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
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/\W,A?,Ag and the Lebesgue measure are defined. Equation(1.1) involves unbounded linear
operators on a Hilbert space and it is a noncommutative generalization of the classical stochastic

integral equations of the form
X(t,w) = :co+/H(t,X)dt+/F(t,X)dQ(t), X(to) = xo, t € [to,T] (1.2)

where the driving process Q(t¢) is a martingale and H, F' are sufficiently smooth ordinary
functions.

We shall employ the various spaces of quantum stochastic processes introduced in [3, 4, 8].The
remaining part of the work shall be arranged as follows; In section 2, some notations and
fundamental structures shall be stated which shall be employed in the sequel. In section 3 some
results and assumptions shall be stated and in section 4 the main result of this paper shall be
established.

2. Notations and Fundamental Structures

In what follows, if N is a topological space, we denote by clos(N), the collection of all non-
empty closed subsets of N. To each pair (D, H) which consists of a pre - Hilbert space D with
completion H , we associate L (D, H) the set of all linear maps x from a pre-Hilbert space D to
its completion H. With the property that the domain of the operator adjoint «* of x contains
D.

The members of £}, (D, H) are densely-defined linear operators on H which do not necessarily
leave D invariant and L} (D, H) is a linear space when equipped with the usual notions of
addition and scalar multiplication.

To H also corresponds a Hilbert space I'(H), called the Boson Fock space determined by H.
A natural dense subset of I'(H) consists of the linear space generated by the set of exponential

vectors in I'(H) of the form

oo

()= D) PR Ff. feH

n=0
where ®°f = 1 and ®"f is the n-fold tensor product of f with itself for n > 1.

In what follows, ID is some pre-Hilbert space whose completion is R and < is a fixed Hilbert
space. We shall write L2(IR;) (resp. L2([0,t])) resp. L2([t,00)),t € IRy = [0,00) for the
Hilbert space of square integrable, y-valued maps on IRy = [0,00) (resp. on [0,t); resp. on
[t,00);t € IRy)

The noncommutative stochastic processes discussed in the sequel are densely-defined linear
operators on R ® F(L%(JRJF)); the inner product of this Hilbert space will be denoted by (-, ).

For each ¢t > 0, the direct sum decomposition

L3(Ry) = L3([0,1)) @ L3([t, 0))
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induces a factorization
D(L3(IR+)) = T(L5([0,1))) @ (L3 ([t, 00)))

of Fock space.

Let IE, IE; and IE?, t > 0 be the linear spaces generated by the exponential vectors in F(L%(]RJF)),
F(L%([O,t))) and I‘(L,Qy([t, 00))), t > 0 respectively.

Then we define

A = LY(DgE, R@I(L(Ry)))
Ay LE(DIE, R®T(L2([0,1)))) @ 1°
Ay 1, ® L (", T(L2([t,0)))), t>0

where ® denotes algebraic tensor product and 1; (resp. 1!) denotes the identify map on
R @ T(L2([0,t))) (resp. T(L2([t,00))) t > 0. We note that the spaces A; and A’, t > 0,
may be naturally identified with subspaces of A.

For n,§ € IDRIE, define || - ||,¢ by

[Z]le = [(n, )], z €A

Then, {|| - |l,¢, 7,& € D®IE} is a family of locally convex seminorms on A; we write 7, for the
locally convex topology on A determined by this family.

In the foregoing A, A; and A’ denote the completions of the locally convex spaces (A, Ty),
(A, Tw), Al Tw), t > 0 respectively we then note that {A;, t € IR, } is a filtration of A.
Hausdorff topology: If A is a topological space, then Clos(A) [resp. Comp(A)] denotes the
collection of all nonvoid closed (resp. Compact) Subsets of A. We shall employ the Hausdorff

topology on Clos(.A) which is defined as follows.
For z € A, M,N € Clos(A), and n,¢ € ID ® IE, set

dpe(x,N') = ylgAf[ |2 — yllne
One(M,N) = sup dye(z, N)
TEM

and

png(M,N) = max(énﬁ(M’N)76W§(N’ M))

Then {pye(-) : , & € IDRIE} is a family of pseudometrics which determines a Hausdorff topology

on Clos(A) denoted in the sequel by 75. If M € Clos(A), then ||M]||,¢ is defined by

[Mllne = pne(M, {0})

for arbitrary n,£ € DRIF.
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For A, B € clos(@) and x € @ , a complex number, define

0(A, B) = supd(zx, B)
€A

and
p(A, B) = max(0(A, B),d(B, A)).

Then p is a metric on clos(@') and induces a metric topology on the space.

Let I C IR,. A stochastic process indexed by [ is an A-valued map on I. A stochastic
process X is called adapted if X(t) € A; for each t € I. We write Ad(A) for the set of all
adapted stochastic processes indexed by I.

Definition: A member X of Ad(A) is called

(i) Weakly absolutely continuous if the map t — (n, X (t)§),t € I, is absolutely continuous
for arbitrary n,¢ € DQIE.

(ii) Locally absolutely p-integrable if || X (-) ||Z£ is Lebesgue-measurable and integrable on [0,t) C
I for each t € I and arbitrary n ¢ € IDQIF.

Notation.

We write Ad(A)waee [resp. L7 (A)] for the set of all weakly absolutely continuous (resp.

loc

locally absolutely p-integrable) members of Ad(.A).

Stochastic Integrators

Let L%,.(IRy) [resp. L& 10 .(IR;)] be the linear space of all measurable, locally bounded

functions from IRi to « [resp. to B(vy), the Banach space of Bounded endomorphisms of

7). I f € LY,.(Ry) and 7 € L) 10c(R4), then mf is the member of L2,.(IR+) given

by (mf)(t) = m(t)f(t),t € Ry.
For f € L%(ZRJF) and m € Lz,
L5(ID,T(L2(IRy))) as follows;

(IR,), define the operators a(f), a™(f) and A(7) in

Jloc

a(flelg) = (f,9)r2m,)e9)

“(Nelg) = celg+of)
d
is

o=0

e(e”"f)

o=0

for g € L2(IRy).

These are the annihilation, creation and gauge operators of quantum field theory.



37th International Conference on Quantum Probability and Related Topics (QP37) IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 819 (2017) 012005 doi:10.1088/1742-6596/819/1/012005

For arbitrary f € L:/?ZOC(RJF) and 7T € LOBO(’}/),IOC(B+)’ they give rise to the operator-valued maps

Ay, A;f, and A, defined by

Ap(t) = alfxpm)
a+(fX[0,t))
)‘(ﬂ-X[O,t))

-

—~
~+ ~+
==
[l

t € IR4, where x, denotes the indicator function of the Borel set I C IR,.

The maps Ay, AJf and A, are stochastic processes, called the annihilation, creation and gauge
processes, respectively, when their values are identified with their ampliations on R®F(L,QY(JR+)).
These are the stochastic integrators in the Hudson and Parthasarathy [11]formulation of Boson
quantum stochastic integration, which we shall adopt in the sequel.

Accordingly, if p, q,u,v € L? (A), f,g € L3,c(IRy) and 7 € L%f’(v)’loc(BJr) then we interpret
the integral.

/tp(s)d A (s) +q(s)dAs(s) + u(s)dA;'(s) +v(s)ds; to,t € R4

to

as it is in the Hudson and Parthasarathy [11] formulation.

Stochastic Differential Inclusions

Definition:

(i) By a multivalued stochastic process indexed by I C IR, we mean a multifunction on [

with values in Clos(A).

(ii) If ® is a multivalued stochastic process indexed by I C IR, then a selection of ® is a

stochastic process X : I — A with the property that X (t) € ®(t) for almost all ¢ € I.
(iii) A multivalued stochastic process ® will be called

(a) adapted if ®(t) C A, for each t € R*;

(b) measurable if ¢ — d,¢(x, ®(t)) is measurable for arbitrary = € A, n,¢ € DRIE

(c) locally absolutely p-integrable if ¢ +— |@(t)||e, t € IRy, lies in LY

1oc(I) for arbitrary
n,¢ € DRIE.

We note that

(1) the set of all locally absolutely p-integrable multivalued stochastic processes will be denoted
by L (A)mus

loc

(2) For p € (0,00) and I C IRy, LY (I x A)pyps is the set of maps

loc

®:1xA— Clos(A)
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such that
t— O(t, X(1)),

t e, liesin LP (A)pps for every X € LY (A),

loc loc
(3) If ® € LY (I x A)mys, then
Ly(®) ={p € L} (A): s a selection of ®}.

(4) For f,g € L3%,.(R+), m € Ly ,(R+) , 1 is the identity map on R ® I'(L3([R+)), and

M is any of the stochastic processes Ay, A;r, A and s — sl, s € IR,.

Thus, we introduce stochastic integral (resp. differential) expressions as follows.
If ® e L2 (I x A)pws and (£, X) € I x L2 _(A), then we make the definition

loc loc

/t O(s, X (s))dM(s) = {/tgo(s)dM(s) tp € Lg(@)}

to to

This leads to the following notion.

Definition: Let F,F.G,H € L? (I x A)mvs and (tp,zo) be a fixed point of I x A, then a

loc

relation of the form

X(t) € xo+ t(E(s,X(s))d Nr +F(s,X(s))dAf(s)

+G(s, X (s))dAS (s) + H(s, X (s))ds);t € I

be called a stochastic integral inclusion with coefficient F, F), G and H initial data (tg,z¢). We

shall sometimes write the foregoing inclusion as follows;
dX(t) € E(t,X(t))d Nx (t) + F(t, X (t))dAs(t)

+G(t, X (t))dA; (t) + H(t, X (t))dt (2.1)

for almost all t € I, X (to) = xo.
This we refer to as stochastic differential inclusions with coefficients E, F, G and H and initial
data (g, Xo).

Definition: By a solution of (2.1) we mean a weakly absolutely continuous stochastic pro-

cess p € L7 (A) such that

dp(t) € E(t,ot)dNx (t) + F(t,o(t)dAs(t)
+G(t,o(t)dAS (t) + H(t, o(t))dt

almost all t € I, p(tg) = xo.

Remarks
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(i)

(i)

(iif)

The existence of solution to a stochastic differential inclusion with Lipschitzian coefficients
has been proved in [8].

If M is a subset of A, we write coM for the closed convex hull of M and if

®:1x A— Clos(A), we define

co®:Ix A— Clos(A) by

(co ®)(t,x) = co (t,x), t,x) el x A
Related to (2.1) is the following stochastic differential inclusion:
dX(t) € co E(t, X (t))dAx(t) + co F(t, X (t))dAs(t)

+co G(t, X (t))dA; (t) + co H(t, X (t))dt

almost all t € 1
X(to) = Xo (2.2)

In [8], Ekhaguere established equivalent form of (1.1) and (2.1) as follows; E, F,G,H €
L2

loc

(I x fl)mus and (to,xp) is some fixed point of I x A. Taking theorems 4.1 and Theorem
4.4 of Hudson and Parthasarathy which describes the matrix elements of the quantum
stochastic integral.

For n,£ € D ® IE, with n = c® e(a) and £ = d ® ¢(3), define

tas, V3, 00 : I =@, 1 C IRy, by

pap(t) = (a(t),m(t)B(t))y

tel.

To these functions, are associated the maps plE, vF, oG, P and coP from I x A into the set

of multivalued sesquilinear forms on ID®IE defined by

(LE)(tx)(n.8) = {(n pap(t)p(t,x)S) : p(t,x) € E(t,x)}

WE)(tz)(n,&) = {(nvs()at.z)§) :q(t,z) € F(t,2)}

(0G)(t,z)(n.§) = {(noalt)ult,z)§) ult,z) € G(t,2)}
P(t,z)(n,&) = (pE)t z)n,8) + (vF)(t,)(n.€)

+(0G)(t, x)(n,&) + H(t,2)(n,§)
(coP)(t,x)(n,&) = closed convex/hull of P(t,z)(n,&)

0.6 € DOE, (tz) el x A
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where
H(t,x)(n,&) = {vt, ) (n,€) : v(-, X(-))

is a selection of H(-, X(-)) V X € L} _(A)

n,& € DRIE, (t,z) eI x A.

As in [3, 4, 5, 6] we shall consider the equivalent form of (1.1) given by

d

2 X(@)E) € P(t,X(1))(1n.6)

X(0) = a, tel0,7T). (2.3)

Inclusion (2.3) is a nonclassical ordinary differential inclusion and the map (n,&) — P(t,z)(n, &)
is a multivalued sesquilinear form on (ID®IF)? for (t,z) € [0,T] x A. We refer the reader to |
8, 9, 10] for the explicit forms of the map and the existence results for solutions of QSDI (1.1)

of Lipschitz, hypermaximal monotone and of evolution types.

3. Preliminary Results and Assumptions

As in [3, 4, 8], we let clos(N) denote the family of all nonempty closed subsets of a topological
space N. For N € {A, @'}, we adopt the Hausdorff topology on clos(N) as explained in the
references above. We denote by d(x, A), the distance from a point z € €' to a set A C . For
A, B € clos(@), p(A, B) denote the Hausdorff distance between the sets.

As in the references above,we shall employ the space wac(./{) which is the completion of the lo-

cally convex topological space (Ad(A)yac, 7) of adapted weakly absolutely continuous stochastic

processes @ : [0, 7] — A whose topology 7 is generated by the family of seminorms given by :

T d
Blye = [2O)e + [ |5 (nBOEdt, for v, € € DSEE. (3.1)

Associated with the space wac(A), we shall employ the space wac(A)(n,£) consisting of ab-
solutely continuous complex valued functions (1, ®(-)¢), where ® € wac(A) for arbitrary pair
of points 1, € IDRIE. By a solution of QSDI (1.1) or its equivalent form (2.3), we mean a
stochastic process ® : [0,7] — A lying in the space Ad(A)waeN L7 (A) satisfying QSDI (1.1)

loc

or its equivalent form (1.2).

We assume the following conditions in what follows:

Sy The coefficients F, F, G, H appearing in QSDI (1.1) are continuous.

S(2) The multivalued map (t,x) — P(t,z)(n,§) has nonempty and closed values as subsets of
the field @ of complex numbers.
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S(3) For each z € A, the map t — P(t,x)(n,£) is measurable.

S(4) There exists a map Kf]z : [0,T] — R4 lying in L}, .([0,T]) such that

p(P(t,2)(1,€), P(t,y)(1.€)) < Kpe(t)llz —yllye (3-2)

for t € [0,T], and for each pair z, y € A.

S(5) There exists a stochastic process Y : [0,7] — A lying in Ad(A)yae such that for each
pair n,& € DRIE,

4( 50 Y 08 PEYE)0.9) < peld) (33)
for almost all ¢ € [0,7] and for some locally integrable map pye : [0,7] — Ry.

Associated with the space A, we define the space of complex numbers A(n, &) := {(n,a€) :
a € A}. We shall denote by S™)(a), the subset of wac(A) consisting of the set of solutions
of QSDI (1.1) corresponding to the initial value a € A and write S (a)(n, &) = {(n, ®(-)€) :
® € ST (a)}. Moreover, ST)(P)(n,¢) := Uged ST (a)(n,€). In what follows, a — ST)(a) is
the multivalued solution map of QSDI (1.1) corresponding to the initial value = a. Under the
conditions S(1) — S5y above, it is well known that the set S (T)(a) is not empty for arbitrary
ac A (see [8, 9, 10]).

Next, we employ Corollary 3.2 in [3] to establish an auxiliary result needed for the proof of
the arcwise connectedness of the entire space ST)(P)(n,£). To this end, for any family of lin-
ear maps {a,, o € [0,1]} in A, we define a,eo = (1,a0€), @ € [0,1] for arbitrary elements
N, € DRIF.

Proposition 3.1: Let ag, a; € A such that ag #a1. Let Xg € ST (ap), X; € S(T) (a1). Then
there exists a continuous map h : [0,1] — wac(A)(n,€) such that h(0) = X0, h(1) = Xye1
and for a € [0,1], h(e) € ST (ay)(n, &) where aq = (1 — a)ag + aar and ayeq = (1 — Q)ayeo +
Qe 1

Proof: By Corollary (3.2) in [3], there exists a continuous map ® : A(n, £) — wac(A)(n, &) such
that for each a € A, ®(a,¢) € ST (a)(n,£), and (aye0) = Xpeo, P(ane1) = Xye1. Then, the

map h : [0,1] = wac(A)(n,&) defined by h(a) = ®(aye,q) is the required map.

Definition : A space X is said to be arcwise connected if any two distinct points can be

joined by an arc, that is a path f which is a homeomorphism between the unit interval and its
image f([0,1])
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4. Main Result

In order to establish the arcwise connectedness of the space S)(P)(n, ), some idea from [14,
15] were employed in what follows.

Theorem 4.1: Assume that the conditions §1) — &) above are satisfied.

Then, for every a € A and arbitrary pair 1, ¢ € IDQIE, the set ST (a)(n, €) is arcwise connected
in C([0,T]; @).

Proof: Fix ag in A and let X,Y € S)(ag). Then the functions X,¢(-), Y;e(-) € ST (ag)(n, €).

By Corollary (3.2) in [3], there exists a continuous map
® : A(n, €) = wac(A)(n,€)

such that ®(ane ) = Xye() and

®(ane) € ST (a)(n, ), Yaye € A(n, §). (4.1)

Since Yy¢(-) is continuous on [0,T], the map A — ®(Y;¢(AT)) is continuous from [0, 1] to

wac(A)(n, ), being the composition of continuous maps
R [0,1] = [0,T; Yae : [0,T] = A(n, €); @ : A(n, &) = wac(A)(n,€)
where h(\) = AT. Moreover,
(Ve (\T)) € ST (Y (AT))(n,€), (4.2)

for each A € [0,7]. Thus there exists a stochastic process
o(Y(AT)) € ST)(Y(AT)) such that

O(Yoe(AT)(t) = (0, o(Y (AT))(#)§), t € [0,T]. (4.3)

Equation (4.3) implies that

%<n,¢(Y(AT))(t)§> € P(t,o(Y(AT))(t)(n,€)
HY(AT))(0) = Y(AT), t € [0,T). (4.4)

Next, we define the following pair of maps. For each A € [0, 1],

Y(t), if 0<t<AT

Xa(t) = { (4.5)
S(Y (NT))(t — AT), if AT <t <T.

Setting Xpe A(-) = (n, Xx(-)§), we obtain the inner product form of equation (4.1) given by:
Ye(t), if 0<t < AT

Xnpea(t) = { (4.6)
Q(Ye(NT))(t — AT), if N\ <t¢<T.

10
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Notice that Xo(-) = X(-), and X;(:) =Y (-), and

L X068 € Pl XA0)01.6)
Xx(0) = ap, almost all ¢t e [0,T]. (4.7)

By definition, for each X € [0, 1],
X € Ad(A)wac () Line(A (4.8)

Hence, X, € S (ag). Therefore, X,¢ » € ST (ag)(n,€). To complete the proof, it remains to
be proved that the map A\ — X,¢ \ is continuous from [0, 7] to the space wac(.A)(n, &) in the
topology of the space C([0,T];@'). To this end, we employ a similar idea from [15]. Let € > 0 be
given and let \g € [0, 1] be fixed. We show that there exists § > 0 such that for any A € [0, 1]
with |A — Ag| < d, we have

[SOUJI_‘)] |Xn§’)\(t) — an,)\o (t)’ < €. (49)

For ¢ € [0,T], we distinguish three cases as follows:
(i) 0 <t < AT < AT, (ii) AT < t < AT, (ifi) \gT < AT < t < T. (4.10)

In the case of (i) we have

| Xne(t) — Xieao (D) = [Yae(t) — Yae(t)| = 0. (4.11)

For case (ii) where A\gT' <t < AT, then

[ Xneno (1) = Xpe A(8)] = [@(Yne(MoT)) (t = AoT) — Ve (1) (4.12)

Since the map t — ®(Y,¢(AoT))(t) and t — Y,¢(t) are uniformly continuous on the interval
I =[0,T), there exists 6; > 0 such that for any ¢ and ¢" in [0,T] with |t —¢"| < §1, we have

[2(Yye(MoD)(t) = @(Yye(MT))()] < % (4.13)

and

Ve (t') = Vet )I<§ (4.14)
Let [Ao — A| < &. Then [t — AgT'| < |A — Ao|T < &; and since
|[@(Yne (AT)(0) = Yye(AoT'), we have

‘Xné Ao (t) — an,/\(t)|
[D(Vpe(MT)(t = AoT) — ©(Yye(AT))(0)] + |2 (Yye(AT))(0) — Yre (2)]

€ €
Cri-o (4.15)

IN

IN

11
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For case (iii), then

| Xngno (1) — Xnea(t)] [D(Ye(MT))(t — AoT) — @(Ye(AT))(t — AT)|
1D(Yye(MoT))(t — MT) — &(Yye(MT))(t — AT)|

[B(Yre(NT))(t — AT) — (Ve (AT))(t — AT)|. (4.16)

IA

—+

Since the map A — ®(Y;,¢(AT)) is continuous from [0, 1] to

wac(A)(n,&) C C([0,T]; @), there exists d2 > 0 such that

‘)\—)\0‘ < 09 (4.17)
implies that
€
sup |O(Yye (AT))(t) — (Ve (A1) (1)] < 3, (4.18)
te[0,7 2
so that for |\ — A\g| < d2, we have
€
(Ve (NT)) (1~ AT) ~ B(Vie(AT))(t ~ AT)| < 5. (4.19)

Furthermore, since the map t — ®(Y;,¢(Xo7"))(t) is uniformly continuous on [0, 77, there exists

83 > 0 such that for any pair of points ¢, ¢  in [0, 7], |t/ — t"| < 63 implies that
[B(Ye D)) () = B(Yre MD)) ()] < 5. (4.20)
Then if |A — X\ < 673, we have
[t = AT —t 4+ MoT'| < |A— Xo|T < 63, (4.21)

and
[B(Yre(oT))(t = AT) = B(Yye(MoT))(t = MT)| < 5. (4.22)

By Equations (4.16), (4.19) and (4.22), if |]A\ — X\p| < min{dq, %3}, then

[ Xnea(t) — Xpeo(t)] <e (4.23)
Let
.01 03
0 =min{7%, &, = 4.24
Hlln{ T s U2, T }7 ( )
then we have proved that if A\g < A and |\ — Ag| < §, then for any ¢ € [0, 7],
| Xneno(t) = Xnea(t)] < e (4.25)
This implies that
sup | Xpea(f) — Xpe o ()] < e (4.26)

t€[0,T]

12
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For A < \g, the proof is similar.

Theorem 4.2: Corresponding to an arbitrary pair of points n,¢ € IDQIE, the function space
ST (P)(n,§) is arcwise connected in C([0,T]; @).
Proof: Let X, ¥ ¢ ST)(P) := Uge i ST)(a) such that for any pair of distinct elements
a, ag € A, X € ST (ap) and Y € ST)(a). Then by Proposition 3.1, there exists a continuous

map h : [0,1] = wac(A)(n,&) such that h(0) = X,¢, h(1) = Y,¢ and for each a € [0, 1],
h(a) € ST (ay)(n,€), where aq = (1 — a)ag + aa. If a = ag, then X, Y € ST)(ag) and the

existence of a continuous map h : [0,1] = wac(A)(n,§) such that h(0) = X,¢ and h(1) = Y,
h(a) € ST (ag)(n, ) follows from Theorem 4.1 above.
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ABSTRACT: By employing the theory of iterated stochastic integration with respect to quantum martingale measures
taking values in a linear space A of unbounded linear operators on a Hilbert space, we present a rigorous formulation of
quantum stochastic partial differential equations (QSPDE). The solutions of certain classes of these equations are closable
operators and they are known to provide examples of irreversible quantum dynamics which have found applications as
models of open quantum systems and models of electric currents in neutrons among many other applications. Existence
and uniqueness of a class of semi-linear quantum stochastic partial differential equations are studied.

AMS Subject Classification (2000): 81 S 25,60 H 10

1 INTRODUCTION

It is well known that when modelling classical physical systems that are susceptible to noise, non-linear stochastic partial
differential equations (SPDEs) often arise. A convenient approach to analyzing nonlinear SPDE’s is to first reduce them
to stochastic integral equations. Availability of a theory of iterated stochastic integration, over time and space, with
respect to a cylindrical Wiener process (G. Da Prato 1992)or a martingale measure [Walsh 1986] subsequently becomes
central.

In analogy to the classical context, open quantum systems and other physical systems (Davies, 1976; Lindblad 1976]
are invariably subject to quantum noise. The temporal evolution of such systems maybe modelled by means of a noncom-
mutative stochastic calculus [Hudson-Parthasarathy 1984; Parthasarathy 1992]that generalises the classical Ito stochastic
calculus. To be able to take account of both the temporal and spatial variation of the observables of the quantum systems,
a framework involving iterated stochastic integration has been established (Applebaum 1995, 1998). In this paper, we
exploit the notion of a quantum martingale measure. Iterated stochastic integration with respect to quantum martingales
is finally employed to establish the existence and uniqueness of a class of quantum stochastic partial differential equations
in this work.

The organization of the paper is as follows. Section 2 highlights some of the fundamental notions and notation which
we use throughout the discussion. Our notion of martingale measures is discussed in section 3. The main results of the
paper are assembled in Sections 4 ad 5. The main results concern the existence and uniqueness of the solutions of a
semilinear quantum stochastic heat equation, which generalizes the classical semilinear heat equation.

2 PRELIMINARIES

This section is devoted to the explanation of some of the basic structures which are employed in what follows. We shall
begin by describing some relevant spaces of vector valued functions.

In the sequel, R and Y are two fixed Hilbert spaces and ID is a dense subspace of R. The inner product and norm of Y
will be written as (-, -)y and || - ||+ respectively. We denote by

H=L3Ry); He=L3(0,1); H'=Lx(]t,00)), t € Ry

the Hilbert spaces of Lebesgue square integrable, Y-valued maps respectively on
Ry :=[0,00); [0,¢); and [t,00), t € R+

Similarly, Sv (resp. Sp(r)) denotes the linear space L5 ;,.(B+) (resp.LE(y) 1o (B+)) of all measurable, locally
bounded functions from R to T (resp. to B(Y)), the Banach space of all bounded endormorphisms of T'; the norm of
B(Y) will be denoted by || - || 5(7)-

The spaces Sy and Sp(y) will be equipped with the weak topologies which we define as follows: For o, 3 € S~y and
t € R, define the linear forms T4 and Tyt respectively on Sy and Sp(v), as

t t
Tui(h) = / (a(s), h(s))xds, h e Sr, Tup(U) = / (a(s). U()B(s))rds, U € Sper).
0 0
‘We introduce the sets:

S} ={Tot:a € Sy,t €Ry}, and S;B(T) ={Tupt : a,8 € Sv, t E R4}

Dynamic Publishers, Inc.
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Then, we endow Sy with the (S, S})—topology and Sp(r) with the o(Sp (1), S;B(T))—topology. With these topolo-

gies, S} is the dual of Sy and S;a(r) is the dual of Sp(v).

Boson Fock Space

If D is a pre-Hilbert space with completion H, the symbol L, (D, H) denotes the set of all linear maps X from D to H
such that domain of the operator adjoint X * contains D. We shall employ the following linear spaces of operators as in
Ayoola 2001, 2008, Ekhaguere 1992.

() A=LL(DRE,RRT(H)), (i)A =L5(DIE,RVT(H:)) @1, (i) A" =1, @ L, (E", T(H')),t >0
where ® denotes algebraic tensor product and 1; (resp. 1*) denotes the identity map on

R @T(He)) (resp.T'(H)),t > 0.
Asusual, thenet A(R+) = {A; : t € Ry }isafiltration of A. Thatis As C Ay, ift > s > 0and User,, A; generates A.

Definition 2.1. (i) If ¢ € R4, and a € A, the member E(a|.A;) of A; satisfying
<777E(G|At)§> = <777 GE>, V77 ER® F(Ht)v IS -ZD@Et’

is called the conditional expectation of a given A;. In terms of the projection P, of R ® I'(#H) onto R @ I'(H,), the
condition expectation satisfies: E(alA;) = PaP;.

(ii). We shall employ the topology s, called the strong topology, on A whose family of seminorms {|| - ||, £ €
DRI} defined by ||a|le = ||d€]|, a € A, £ € DRIE.
We denote the completion of the locally convex space (A, 75) by A. The following definition and structures concerns our
framework for stochastic processes and integration.
Definition 2.2. An A-valued map X on an interval 5 C R4 is called a 7,-stochastic process indexed by J if t —
X (t)€, t € J is measurable for arbitrary £ € IDQIE, where R ® I'(H) is endowed with its natural Borel structure.
A stochastic process X indexed by J is called adapted if X (¢) € A, foreacht € J.

The set of all adapted processes X on R such that

t
IXIE = [ ()l < oc
0

foreacht € Ry, & € ID®IE will be denoted by L, (A).
Toeach f € Sy and m € Sp(r), we adopt the basic field operators a(f), a'(f), and A(r) in L, (IE,T'(H)) and in
terms of these operators, we introduce the following stochastic processes as in (Hudson-Parthasarathy 1984).

Ar(t) = alfxp.n), AFE) = (fxi0.0), Ax(t) = AMX10.)
t € R, where 1 denotes the indicator function of the Borel set I C R . Employing the notation:
dAs(t) = Ag(dt), dAL(t) = Al(dt), d A (t) = Ax(dt), t €Ry,

then we interpret the stochastic integral

t
(0 - (@) + )5 ds) + k() A} (ds) + hs)ds)
0
as in (Hudson-Parthasarathy 1984, Ekhaguere 1992) for certain admissible integrands p, ¢, k, h € L7, (A).

3 MARTINGALE MEASURES

Let (X, 7) be a complex, Hausdorff, locally convex space with topology 7 and dual X', and (€2, ) a measurable space,
with B a o-algebra of subsets of 2. In the sequel, M (B, X) is the set of all X-valued additive set functions y on B
such that B — z’(p(B)) is o-additive and regular on B, for all z' € X'. Then, for each y € M (B, X) and arbitrary
x' € X', 2’ o pis a complex, and hence automatically finite, measure on (Q, B).

Definition 3.1 Let A and (92, B) be as above. Amap W : [ x B — A. I C R, will be called a 7,-martingale measure
relative to the filtration A(7) provided that
(i) W(0,B)=0, VBeB;
(i) foreach B € B, the map ¢t — W (t, B),t € I, is adapted to A(I);
(iii) for each B € B, the map t — W (¢, B), t € I, is a martingale, i.e.
E(W(t,B)|As) = W (s, B) whenever s,t € [ satisfy t > s;

(iv) foreacht € I, the map B — W (t, B), B € B, isin M (B, A);
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(v) foreach ¢ € IDRIFE, there is a regular, o-finite measure we on (£2, B) and a locally bounded function c¢ on I such that
W (t, B)lle < ce(t)we(B), t € I, B€B.

Notation 3.2 The symbol MM (I, B, A) will denote the set of all A-valued, .A(I)-adapted martingale measures on
(2, B). The set is not empty as some examples of quantum martingale measures can be found in Applebaum (1998).
Let 4,0 € M(BR"),Sy) and 7 € M (B(R"), Sp(r))- In what follows, we shall assume the validity of the following
inequality.

max{||u(s, B)|[x,llo(s, B)|v; [7(s, B)llpr)} < Cuor(8)wpon (B)- (3.1)
for some nonnegative, locally bounded functions c.s» on R, o-finite measure wuo,~ on (Rd,B(Rd), and arbitrary
a,B € St, (5,B) € Ry x B(R?). Next, we introduce the maps

Au(t,B) = a(xo.nu(B)); AL(t, B) = a' (x(0,00(B)), Ax(t, B) = A(x{o,n7(B)) (3.2)

for arbitrary (s, B) € R+ x B(R"), where ¢ denotes the indicator function of C. Then the following holds.
Proposition 3.3 The maps A,, Al, and A, are 7,-martingale measures, ie. {A,, AL, A;} is a subset of
MM (R, B(RY), A).

Definition 3.4 The triplet {4, Al, A:} with u,0 € M(BR"),Sv), and 7 € M(BR"),Sp(r)) will be called
quantum 7s-martingale measures.

4 ITERATED STOCHASTIC INTEGRATION WITH RESPECT TO QUANTUM
MARTINGALE MEASURES

Throughout the rest of the paper, we employ the quantum T7s-martingale measures as defined above. The space
L2 0c Ry x R, A) is the set of maps / : Ry x R? — A satisfying the following properties:

(i) for each = € R?, the map t — h(t,z), t € Ry, isin L}, .(A),

(ii) the map h is locally uniformly continuous in the sense that given any € > 0, there is a § > 0 such that

sup |[|h(s,z) = h(s,y)lle <e,
0<s<t

whenever ¢ € R+, § € D®IF, x,y € B, a bounded member of B(R?), and ||z — y|| < J, where we write ||z|| for the
norm of z € R?. We endow L2 ;,.(R: x R%, A) with the locally convex topology Tucioc Whose family {|| - ||ez, € €
DDRIE, t € R.} of seminorms is defined by

1
t 3 -
Htht = (/ sup ||h(s7:c)||§) ’ h e Lchoc(R+ XRd7A)7 6 € ID@IE7 t €R+.
0 z€el

Remarks.(i) Let E, F,G € L2 ,,.(R+ x R?, .Zl), we define an iterated stochastic integral of the form:

M(t, B) = / / (E(s, ) Ax (ds, dz) + F(s,z)A,(ds, dz) + G(s, x)AL(ds,da;)) , (4.1)

B J0,1]

(t,B) €[0,T] x BRY), T > 0, B bounded.
(ii) The integral M (¢, B) is developed as follows:
For x = (ziz2, - ,24), ¥ = (y1,Y2, " ,Yd) € R, we write x < y (resp. x < y) if and only if
z; < yj, §j = 1,2---d (resp. © < yandx # y). Let Brec(R?) be the subring of B(R?) consisting of all
rectangles, i.e sets of the form: [a,b) = I1_,[a;,b;) for some a,b € R®. We first develop the integral for the case
where B € Biec (Rd). It is well known that the extension of the formulation to the case where B is an arbitrary subset of

R? follows a standard procedure. We have the following results on iterated quantum stochastic integration with respect
to the processes Ar, Ay, Al . The establishment of the result is similar to that of Theorem 3.1 in Applebaum (1998).

Theorem 4.1: (i). Fort € [0,T], I € Brec(®?), n = v ®e(a), £ = u® e(B) € DRIF, we have:

(n, M(¢,1)¢) = /IM{<04(8)77T(S7dw)ﬂ(S))T(??E(S@)&)

+ (uls, dzx), B(s))x (n, F(s, 2)€) + (a(s), o (s, dz)B(s))x (1, G(s,2)€) } -
(i1) The order of integration may be changed. Defining the integral:

M(t,I) = /[0 . /1 (E(s,ﬂc) Ax (ds,dz) + F(s,z)A,(ds,dz) + G(s, x)Aj,(ds,dx)) , (4.2)

then M (t,I) = M(t,I) on DRI, for arbitrary ¢ € [0, T'. B
(iii) The map M : [0, T] x B(R?) — Aisin MM([0,T] x B, A).
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S  QUANTUM STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

An equation of the form

X X X 0X IXY
—(t = Hl|tx X, —, , 5 Eltxe, X, —, -, | N\=(t,
8t ( 7m) ( 7x’ ) am ) ) aml ) + ( 7:'U7 ) 8:1: ) ) 81:k ) ( x)
0X omX\ 0X "X\
Flto,X, =, | Au(t Gtz X, 2=, Al (t,2)(5.1
+ (,.’E, 9 aka ’ amm) M(7x)+ (7'1.7 ’037” ) 813") o(vx)( )
4 0” “aq X .
t € [0,7], z € B, a bounded subset of R* where denotes ———————— with a = a1 + -+ + aq for
oo . Ox° 0x010x%2 - .- Qgad .
some nonnegative integers a, ..., aq Will be called a quantum stochastic partial differential equation (qspde) of order

max{l, k, m,n}. Furnished with appropriate constraints on E, F, G, H and some boundary conditions, the first problem
is to make sense of this relation, after which one must tackle the issue of the existence and uniqueness of its solutions.
As an application of the theory of martingale measures formulated above, we search for a solution, in the 7s-topology,
on A, of the following semilinear quantum stochastic heat equation in one space dimension, associated with the quantum
martingale measures, A, Al Ay, where E, F, G lie in Licloc(]lbr, /i) and satisfy some Lipschitz conditions

(8tX)(t7:r) = (85”3X)(t7m) +E(t7X(t7 x)/\ﬂ(t7x) +F(t7X(t7 x))Aﬂ(ta .II) +G(t,X(t,1}))A::(t, ‘T)
X(0,t) = Xo(z), z € [0,L]; 9:X(t,0)=0=(0-X)(t,L), t>0 (5.3)
To this end, we will need the following well known (Walsh 1986) properties of the Green’s function G (¢; x, y) of equation
(5.2).
t
Gi) [ Gl )Gty )y = Gls + tiw,2)
0
G(ii) G(t;z,y) = G(t;y,2);

_ 2
G(ii) G(t;z,y) < C—:; exp (—M — t) , x,y € [0, L], t € (0, T], where Cr is some positive constant.

NG 4t
Proceeding formally and using (5.3) as well as some of the properties of the Green’s function cited above, the QSPDE(5.2)
may be re-written in the form

/Ot X(t, z)p(x)dx — /OL Xo(x)p(z)dz

- /Ot /OLX(s,x)ga"(x)dstJr/Ot /OL o(@)[E(s, X (s,2)) Ar (ds, dX)

+F(s, X (s,2))Au(ds, dx) + G(s, X (s, x)) Al (ds, dx))] (5.4)

valid for all ¢ € C*°[(0, L]) such that ¢’ (0) = 0 = ¢'(L). It follows that (5.4) holds whenever X solves (5.2) and
(5.3). Moreover, adapting the reasoning in (Walsh, 1986), one checks that X solves (5.4) if and only if X is a solution of
the stochastic integral equation

X(t,z) = /OXO(y)G(t;ﬂc,y)der/O/o Gt —s;z,y)([E(s, X (s,2)) Ar (ds,dx)
_|_

F(s,X(s,))Au(ds,dz) + G(s, X (s, )) AL (ds, dx)] (5.5)

In what follows, L, T > Oand E, F,G € L2 ,,.(R+, A) are Lipschitzian, that is, for each ¢ € ID®IE, there is a locally
bounded function K¢ : [0, 7] — R such that

max{[|E(t, z1) = E(t, 22) e, [|F(t,21) = F(t, z2)le, [|G(E, 21) — G(t, 22) |}

< Kg(t)HZl — Z2||E(§),Z1, 2w EA tE [O,T],
for some self map € : DRI — IDQIE.

Notation 5.1. We will require the following notation.
Ife : DRF — IDRIF, write €™,n > 1, for the n-fold composition of ¢ with itself, i.e. €™(§) = (" (€)), € €
DRIE, n=1,2,..., with €° the identity map on DRIE.

For each £ € DRIE, let (IDRIE). ¢ be the orbit of £ under &, i.e.

(DRE)ee ={e"(€) :n=0,1,2,...}
Definition 5.2: By a solution of (5.2) and (5.3) in the 7,-topology, we shall refer to a solution of the stochastic integral
equation (5.5) that satisfies the following condition:

sup sup sup || X(t,X)||5 < oo, £ € DRIE (5.6)
VE(DRIE), ¢ v€[0,L] s€[0,t]
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5.1 Solutions in the 7,-Topology

Theorem 5.3: Suppose that the following conditions are satisfied:

max{||u(s, B)|x,[lo (s, B)|v; [7(s, B)llpr)} < Cuor($)wpon (B). (5.7)
for some nonnegative, locally bounded functions cuo» on R, o-finite measure w,,~ on (R, B(R), is absolutely
continuous with respect to the Lebesgue measure on (R, B(R)), with locally bounded Radon-Nikodym derivative wor
and arbitrary a, 8 € Sy, (s, B) € R+ x BR?).

Then the QSPDE(5.2), equipped with conditions (5.3) and (5.6) possesses a unique solution in the 7s-topology.

Proof. Existence: This will be proved by means of a Picard’s iteration process. Let Xo(t,xz) = Xo(z), z € [0, L],
t € [0,T]. Then, t — Xo(t,x), t € [0,T] is adapted, for each z € [0, L]. Introduce the iterative scheme

Xng1(t,z) = /o Xo(y)G(t;m,y)dy+/o /0 G(t — s;z,y)[E(Xn(s,x),s) Ar (ds, dz)
+F(Xn(s,x),8)Au(ds, dz) + G(Xn(s, ), s) AL (ds, dzx)], n =0,1,2,...

From the adaptedness of Xy, it follows that { X,,(-,z) : n = 1,2, ... } is a sequence of adapted stochastic processes, for
each z € [0, L]. Define Z,,(t,z) = Xn41(t,2) — Xn(t,z), n=0,1,2,.... Then

t oL
Zn(t,x) = /0 /O Gt —s,z,9)[(E(s, Xn(s,z)) — E(s, Xn-1(s,2))) Ax (ds,dx)
+(F(s, Xn(s,2)) — F(s, Xn-1(s,z)))Au(ds,dz) + (G(s, Xn(s,z)) — G(s,Xn_l(s,x)))A:r,(ds, dzx)],
n =1,2,...; whence for arbitrary £ = u ® e(8) € IDRIE, we have

1Za(t o)} < 3 / / Gt — s;2.9)°[|(E(s, Xn(s,2)) — E(s, Xn1(s,2)))2 X
|<5(3)7ﬂ'(3?d$>5(3)>|
I (s, X (5,2)) — F(s, Xn1(5,2)) [21{B(s), (s, d))|
LG, Xa(s,2)) — Cls, Xn_1(5, 2))|21(B(5), o (5, d)) [ ds,
< Cre / / G(t — 5:2,9)% | Zn1(5, )|y o (dy)ds,

where C'rg = 9 ( sup_[ke(s)Cpor(s) max(||5(s)[|*, ||ﬁ(8)||)]) - Let

0<s<T

Z(t)i= sup  sup sup |Za(t,2)|}, t€[0,T], £ € DRE
re(DRIE). ¢ =€[0,L] s€[0,t]

Then, from G(3), G(7i7) above, whence/ G(t;z,y)°dy < cr/Vt, forall z € [0, L],

we get
t
1
Zn(t)E < 3erC o ———Zn1(s)ids, t€[0,T].
(0 < 3erCre (s fon(0)) [ s zun(ots, te T

Choose any p € (1, 2) and estimate the integral, using Holder’s inequality, to obtain

t
Z’n(t)zq S KT&/O anl(s)qusv q= Z%

T with p € (1,2), t € (0,7

where K¢ is some positive constant. Applying a form of Gronwall’s Lemma we get

Zn()3" < Zo(t)g" (Kret)"/(n)!, n=0,1,2,..., t€[0,T).
Hence as ( %/ KTngt) ! / %/(n!) is the general term of a convergent infinite series of nonnegative numbers, the last

inequality implies Z Zn(t)e < 0o, t € [0,T]. From the definition of Z, (¢)¢ it follows that the sequence X, (¢, z) is
n=1

Ts-convergent in A to some X (¢, z) for arbitrary (¢, z) € [0,T] x [0, L], whence the sequence
t oL
[ ]G = s Bl Xu(s,2)) Ax (ds,do) + Fls, X, (5,2) A, (ds, do)
o Jo

+G (s, Xn(s, x))AL (ds, dz)]
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also Ts-converges to
t pL
/ / Gt — s;z,y)[E(s, X (s,z)) Ax (ds,dz) + F(s, X (s,z))Au(ds, dzx)

+G(s, X (s,z)) Al (ds, dz)],

for arbitrary (¢, z) € [0, 7] x [0, L], showing that X is a solution of (5.5). Finally, since each t — X, (¢,-),t € [0,T],
is adapted for each n, it follows that ¢ — X (¢,-), ¢ € [0,T is adapted. This concludes the proof of the existence of a
solution of (5.5) and hence of (5.2) and (5.3).

Uniqueness: Suppose X and Y both solve (5.5). Then, with Z = X — Y, we have

// Gt — s:2,9)[(E(s, X (5,2)) — E(s,Y (5,2))) Ax (ds, d2)

F(s, X(s,2)) — F(s,Y(s,2)))Au(ds, dx)
—|—(G(s,X(s, z)) — G(s,Y (s,2))) Al (ds, dz)).

Let £ € ID®IE be arbitrary and

ZWi=  swp  sup sup [Z(ta)]o, te [0,T).
9E(DRIE), ¢ v€[0,L] s€[0,1]

Then arguing as above, we get
t
Z(t)2" < KT§/ Z(s)glds, q= Ll, with p € (1,2), t € [0,T].
0 p—=

where K¢ is some positive constant. Applying Gronwall’s Lemma, it follows that Z(t)e = 0, for arbitrary £ € DRI
and each t € [0, T, whence X (t,x) = Y (¢, x) for all (¢,2) € [0,T] x [0, L]. This proves uniqueness.
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ABSTRACT. This work is concerned with the existence of so-
lution of Quantum stochastic differential inclusions in the sense
of Caratheodory. The multivalued stochastic process involved
which is non-convex is Scorza-Dragoni lower semicontinuous
(SD-ls.c.) hence giving rise to a directionally continuous se-
lection. The Quantum stochastic differential inclusion is driven
by annihilation, creation and gauge operators.
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1. INTRODUCTION

The vast applications of differential inclusions in control theory,
economic model, evolution inclusions to mention a few, had made
the study of differential inclusions of great interest [1], [8], [18].
Likewise, the quantum stochastic differential inclusions which is a
multivalued generalization of quantum stochastic differential equa-
tion of Hudson and Parthasarathy has vast applications. This ex-
tension was first done in [9] in which the existence of solutions of
Lipschitzian quantum stochastic differential inclusions was estab-
lished. The study of solution set of this problem was done in [2], [3]
and references cited there. The case of discontinuous quantum sto-
chastic differential inclusions has application in the study of optimal
quantum stochastic control [15]. The quantum stochastic calculus
is driven by quantum stochastic processes called annihilation, cre-
ation and gauge arising from quantum field operators.

A multivalued map that is lower semicontinuous and convex-valued
has continuous selection by Michael selection theorem, but if the
convexity is dropped the continuous selection does not exist. But
for a differential inclusion with lower semicontinuous multifunction
that is not convex-valued, there is an analogue of Michael selection
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2012
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theorem called the directionally continuous selection [4] which gave
rise to a class of discontinuous differential equations. A more gen-
eral case of this selection for infinite dimensional space is found in
[5].

The quantum stochastic differential inclusions considered in this
work has its coefficients to be multivalued stochastic processes that
have a special form of lower semicontinuity called Scorza-Dragoni
lower semicontinuous case. It is noteworthy that the Scorza-Dragoni
property is a multivalued generalization of Lusin property[14]. The
directionally continuous selection of the Scorza-Dragoni of the mul-
tifunction gave rise to a class of quantum stochastic differential
equations considered in [16] which have solutions in the sense of
Caratheodory. Apart from the application of this work in quantum
stochastic control, another motivation for the work is the applica-
tion of the results in the study of non-convex quantum stochastic
evolution inclusions which shall be considered in a later work.

In section 2 we give preliminaries which are essential for the work
and we prove the main results in section 3.

2. PRELIMINARY

In what follows, if U is a topological space, we denote by clos(U),
the collection of all non-empty closed subsets of U.

To each pair (D, H) consisting of a pre-Hilbert space D and its
completion H, we associate the set L} (D, H) of all linear maps z
from D into H, with the property that the domain of the operator
adjoint contains D. The members of L} (D, H) are densely-defined
linear operators on H which do not necessarily leave D invariant
and L} (D, H) is a linear space when equipped with the usual no-
tions of addition and scalar multiplication.

To H corresponds a Hilbert space I'( H) called the boson Fock space
determined by H. A natural dense subset of I'(H) consists of linear
space generated by the set of exponential vectors(Guichardet, [12])
in I'(H) of the form

() =P QR f. feH
n=0
where ®" f = 1 and ®" f is the n-fold tensor product of f with
itself for n > 1.
In what follows, ID is some pre-Hilbert space whose completion is
R and ~ is a fixed Hilbert.
L2(Ry)(vesp. L2([0,t)),resp. L2([t,00)) t € Ry) is the space of
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square integrable y-valued maps on R, (resp.[0,t), resp.[t,00)).
The inner product of the Hilbert space R @ T'(L2(Ry)) will be
denoted by (.,.) and || . || the norm induced by (.,.) .

Let E, E; and Ef, ¢ > 0 be linear spaces generated by the exponential
vectors in Fock spaces I'(L2(R,)), ['(L2([0,t))) and I'(L2([t, 00)))
respectively ;

A= Li(DSE, R @ T(L2(R,)))
A, = L(DEE, R @ D(L2([0,1)) ® I
A" =T, ® L (E', T(L2([t, 0)))), t >0
where ® denotes algebraic tensor product and T;(resp.I) denotes

the identity map on R ® I'(L3([0,1))))(resp.I'(L3([t,00)))), t >0
For every n,¢ € DQE define

| @ [[pe=] (n,28) |, v€ A

then the family of seminorms

{Il'- llng: . & € DSE}

generates a topology 7, , weak topology .

The completion of the locally convex spaces (A, 7,) , (A, 7w) and
(A*,7,) are respectively denoted by A , A; and A".

We define the Hausdorff topology on clos(A) as follows:
Forz e A, M,N € clos(A) and n, £ € DRE, define

Pre(MN) = max(dye (M, N), 6y (N, M)

where

Spe(MUN) = sup dye(z, N) and
xeM

dn&(va) = ylgjff |z —y ||n§ .

The Hausdorff topology which shall be employed in what follows,
denoted by, 7 , is generated by the family of pseudometrics {pye(.) :
n,§ € DRE}

Moreover, if M € clos(A) , then || M ||, is defined by

| M= pre(M,{0});
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for arbitrary n, £ € DRE.
For A, B € clos(C) and x € C , a complex number, define

d(x, B) =

5(4, B) = sup d(z., B)
€A
) =
(

1nf]x—y\

and p(A, B) = max(0(A, B),§(B, A)).

Then p is a metric on clos(C) and induces a metric topology on the

space. N

Let I CRy. A stochastic process indexed by I is an A-valued mea-

surable map on 1. N

A stochastic process X is called adapted if X (t) € A, foreach t € I.

We write Ad(A) for the set of all adapted stochastic processes in-

dexed by I.

Definition 1: A member X of Ad(A) is called

(i) weakly absolutely continuous if the map ¢t — (n, X (¢)§) , t € [

is absolutely continuous for arbitrary 7, ¢ € DQE

(i) locally absolutely p-integrable if || X (.) ||, n¢ 15 Lebesgue - mea-

surable and integrable on [0,¢) C I for each t € I and arbitrary

n,¢ € DRE.

We denote by Ad(ﬂ)wac(resp.Lfoc(ﬂ)) the set of all weakly, abso-

lutely continuous(resp. locally absolutely p-integrable) members of

Ad(A).

Stochastic integrators: Let L5, (R+) [resp.L% ) ;,.(R4 )] be the lin-

ear space of all measurable , locally bounded functions from R, to

v [resp. to B(y) , the Banach space of bounded endomorphisms of
9] If f € L ZOC(R+) and 7 € Ly ) ,,.(R.) , then m f is the member

of L29,.(R..) given by (xf)(t) = n(6)/(¢) , t € R,

For f € L2(R); and m € L%, ,.(Ry); the annihilation , creation

and gauge operators, a(f),a™(f) and A(7) in L;;(D,F(LEY(R)JF))

respectively, are defined as:

a(els) = {1, 9)rzce,e(0)
@ (F)e(g) = ey + ) lo-o
A(mlelg) = (™ 1) o=y

g€ L3 (R),
For arbltrary f € L3,(Ry) and 7 € L, ), (Ry) , they give rise
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to the operator-valued maps Ay, A;{ and A, defined by:

Ar(t) = alfXou)
A}F(t) = a+(fX[0,t))
Aﬂ(t) = )\(WX[O,t))

t € R, , where y; denotes the indicator function of the Borel set I C
R.. The maps Ay, A}F and A, are stochastic processes , called anni-
hilation, creation and gauge processes , respectively, when their val-
ues are identified with their amplifications on R@T'(L2(Ry.)). These
are the stochastic integrators in Hudson and Parthasarathy|[13] for-
mulation of boson quantum stochastic integration.

For processes p, q,u,v € LZOC(A), the quantum stochastic integral:

/ (p(s)dAr(s) 4 q(s)dAs(s) + u(s)dA} (s) +v(s)ds), to,t € Ry

to

is interpreted in the sense of Hudson-Parthasarathy[13] The defini-
tion of Quantum stochastic differential Inclusions follows as in [9].
A relation of the form

dX(t) € E(t, X(t))dA(t) + F(t, X(t))dAs(t)
+ G(t, X(t))dA; (t) + H(t, X (t))dt almost all t € I (1)

is called Quantum stochastic differential inclusions(QSDI) with co-
efficients E, F, G, H and initial data (to, x¢).
Equation(1) is understood in the integral form:

X(t) € xo + / (E(s, X(s))dAx(s) + F(s, X (s))dAy(s)

to

+G(s, X (s))dA} (s) + H(s, X (s))ds), t € I

called a stochastic integral inclusion with coefficients F, F, G, H and
initial data (o, xo)
An equivalent form of (1) has been established in [9], Theorem 6.2
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(LE)(t,2)(n,€) = {0, kas(t)p(t, 2)E) : p(t, ) € E(t, x)}
WEF)(t,2)(n,§) = {(n,vs(t)q(t, 2)§) : q(t,x) € F(t,2)}
(0G)(t, 2)(n, &) = {(n, oa(t)ult, 2)§) : ult,z) € G(t,2)}
Pt,z)(n, &) = (nE)(t, x)(n,&) + WF)(t,2)(n,€) (2)

+ (0G)(t, 2)(n. ) + H(t, ) (n, )
H(t,x)(n, &) = {o(t, z)(n,€) - v(., X())
is a selection of H(., X())V X € L2 _(A)}
Then Problem (1) is equivalent to

&, X(0E) € B(t, X (1)(1,€)

dt (3)
X(to) = 2o

for arbitrary 7, € D®E , almost all ¢ € I. Hence the existence
of solution of (1) implies the existence of solution of (3) and vice-
versa.

As explained in [9], for the map P,

P(t,x)(n,€) # P(t, (n, 2€))

for some complex-valued multifunction P defined on I xC for t € I ,
re A n & e DRE.
Definition 2: For an arbitrary n,¢ € DQE, let M > 0 , we define

M
a set Fné’ as

DM = {(t,2) € I x A:| (n,2€) |< Mt}

Let (to, z9) € I x A and € > 0. For an arbitrary 1, ¢ € DQE, (to, 20)
€I x Aand § > 0, the family of conical neighbourhoods;

T ((tg, 20),6) = {(t,2) € I x A:|| @ — xg [|je< M(t — o),

t0§t<t0+(5}

generates a topology, 77, which satisfies the following property:
(P) For every pair of sets A C B, with A closed and B open(in the
original topology), there exists a set C, closed-open with respect to
7+, such that A Cc C C B.

This topology follows from [5] and the references cited there.
Definition 3: (i) For an arbitrary pair 1, € DQE a map & : I x

A — A will be said to be I')¢-continuous(directionally continuous
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or 7t-continuous) at a point (t,z0) € I x A , if for every ¢ > 0
there exists 6 > 0 such that

| @(t,x) — P(to, x0) [[pe< €eif to <t <tg+dand ||z —xg ||y
< M(t—t)

(ii) For an arbitrary n, £ € DRE, S C A, a sesquilinear-form valued
map ¥ : S — 2°051PSE)* will he said to be lower semicontinuous on
S if for every closed subset C' of C the set {s € S : ¥(s)(n,&) C C}
is closed in S.

We remark that if £, F, G, H are lower semicontinuous on S, then
the sesquilinear-form valued P is lower semicontinuous on S.

A multivalued generalization of Lusin property which is called Scor-
za - Dragoni property [14] employed in [6] is used to define the form
of lower semicontinuity in this work. The well-known Lusin prop-
erty is the following.

Definition 4:(Lusin’s property)Let X and Y be two separable met-
ric spaces and let f: I x X — Y be function such that

(i)t — f(t,u) is measurable for every u € X

(ii) w — f(t,u) is continuous for almost every t € I , I C R,.
Then, for each ¢ > 0, there exists a closed set A C [ such that
A\ A) <€, (X\is the Lebesgue measure on R) and the restriction
of f to A x X is continuous. N
Definition 5: A sequilinear- form valued map ¥ : [0,7] x A —
25¢s¢P2E)* 5 Scorza-Dragoni lower semicontinuous (SD-l.s.c.) on
[0,7] x A if there exists a sequence of disjoint compact sets J,, C
[0, T], with meas([0, 7]\ U, cn,,) = 0 such that W is lower semicon-

tinuous on each set J, x A.

If U is lower semicontinuous and convex-valued then by Michael se-
lection theorems, there exists continuous selection of W. But if the
convexity is removed and W is not decomposable valued multifunc-
tion then the existence of continuous selection is not guaranteed.
However, a non-convex analogue of Michael selection is Directional
continuous selection result in [4] and for infinite dimensional space
in [5]. We established in this work that such selection exists for
SD-lsc multivalued stochastic process.

For an arbitrary n,¢ € DQE | it U € pul,vF, oG, H appearing in
(1) are SD-Isc then the map (¢,x) — P(¢,z)(n, ) is SD-Isc.

A quantum stochastic differential inclusion will be said to be SD-
lower semicontinuous if the coefficients are SD-Isc.

3. MAIN RESULTS
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Theorem 1: For almost all ¢ € I, n,£ € DQE. Suppose the
following holds:
(i) The maps X — U(t,X)(n,§), ¥ € {uE,vF,0G, H} are non-
empty lower semicontinuous multivalued stochastic processes
(ii) The maps t — V(t, X)(n, &) are closed

(iii) 7+ is a topology on I x A with property (P).
Then the sesquilinear form valued multifunction, (¢, X (¢)) —
P(t, X(8))(n, €)
P(t, X () (0, &) = (uE) (L, X(1))(n, &) + (wF)(L, X (1))(n,€)
+ (0G)(t, X(1)(n, &) + H(t, X(¢))(n, )

admits a 7" -continuous selection.

Proof: P is non-empty , since each of ¥ € {uF,vF,0G, H} is non-
empty.

Therefore, P is a non-empty lower semicontinuous sesquilinear form-
valued multifunction.

We shall employ a similar procedure as in the proof of Theorem 3.2
in [5] to construct a 77 -continuous e-approximate selections P. of P,
hence by inductive hypothesis we obtain a 7F-continuous selection
P of P.

Let € > 0 be fixed , since X — P(t, X)(n, ) is lower semicontinuous
, for every X(t) € A, we choose point y,¢e x(t) € P(¢, X ())(n,&)
and neighbourhood Uy of X () such that

inf t) — Hl<eVX({)eU 4
mestenx e | 96X (1)~ vner (D) | Helx

Now , let (V,,)aepe be a local finite open refinement of (UX)X(t)e/T ,
with V,, C Uy, , and let (W,)aepe be another open refinement such

that cl(W,) C V, for all a € g°. By property (P), for each a , we
can choose a set Z, , clopen w.r.t. 71, such that

(W) C int(Za) C cl(Za) C Vi (5)

Then (Z,), is a local finite 77 clopen covering of A . Let < be a
well-ordering of the set ¢, define for each o € 3¢ |

o =2\ (U 2)

A<
Set O° = (£),), a € . By well-ordering , every x € A belongs to
exactly one set 25 where @ = min{a € ¢ : z € Z,}. Hence , O°
is a partition of A Moreover, since Z, is locally finite(wrt 7 and
therefore wrt 77), the sets [ J,_, Zx are 77 clopen. Hence O° is a
7T clopen disjoint covering of A such that, {cl(92)} refines (Vy)a.
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By setting yre , = yne.x. and Pe(t, X(1))(1,§) = Yne x.., Yo € [°
we have 77 continuous function P., which by (4), satisfies

inf P.(t, X(t ,E) — t) |<e€

ynE,P(t)GP(t,X(t))(né) ‘ ( ( ))(77 f) ynéJp( ) ’

Therefore , there exists an e-approximate selection P, of P.
Since € was arbitrarily chosen ,thus we have a 7 -continuous selec-
tion P of P. [J
Theorem 2: Suppose the following holds for an arbitrary n,& €
DRE, ¥ e {uE,vF,cG, H} :
(i) t = W(t, X(1))(n, &) are measurable for all X € A
(i) X — W(t, X(t))(n, &) are SD-lower semicontinuous with respect
to a seminorm || . ||, , for almost all t € 1
(ili) ¥ are integrably bounded, that is, there exists Ly (t) € L*(I)
such that, a.e. t € I, for all X &€ .Z,

inf < LY(1).
YEW (1,2)(n.€) [y 1= Lye(t)

Then the SD-lower semicontinuous quantum stochastic differential
inclusions

Lo X(0)€) € B(t, X(1)(n.£)

dt (6)
X(to) =X

has an adapted weakly absolutely continuous solution in the sense
of Caratheodory.
Proof: Since for arbitrary ,¢ € DQE, ¥ € uE,vF, oG, H are SD-
lower semicontinuous then P(¢, x)(n, £) is SD-lower semicontinuous,
Vo € .Z, a.e. t € I. The sequence of disjoint compact sets .J, =
Ny Y and meas(I \ Upend,) = 0 such that P(.,.)(n, §) restricted
to 2, = J,, x A is lower semicontinuous, with respect to || . ||,e.
Also, suppose L, = 5 max Lg’é(t), then a.e. t € I,

T Y 1< Loglt).
for all X € A
For each n > 1, we can apply Theorem (1) and obtain 7" -continuous
selections P, € P.
For an arbitrary selection ¢ from P, if we define

Po(t, X)(n,€) ift € Jy,

P(t, X)(n,€) = {g(@ X)(,€)  ift & Upendn
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then P is a 77-continuous selection of P, such that | P(t,z)(n, ) |<

Ly

¢(t) < Ly e, for every (t,X) € I x A, n,& € DQE.

Then by applying Lusin’s property to each bound of L, ¢, n € N
the set of solutions of 7" -continuous quantum stochastic differential
equations is the solution set of (6) in the sense of Caratheodory. O

(1]
2]
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(12]
(13]
(14]
(15]
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ABSTRACT

We present a numerical method for constructing, with a spec-
ified accuracy attainability sets for Lipschitzian quantum stochas-
tic differential inclusions. Results here generalize the Komarov-
Pevchikh results concerning classical differential inclusions to the
present noncommutative quantum setting involving unbounded lin-
ear operators on a Hilbert space.
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1. INTRODUCTION

There are many problems in quantum stochastic control theory and in the
solutions of inclusions arising from regularization of discontinuous quantum
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stochastic differential equations that are concerned with the construction of at-
tainability sets for quantum stochastic differential inclusions (QSDI). As in the
classical cases attainability sets play prominent roles in the solutions of these prob-
lems. The computation of optimal control maps and the trajectories depends on the
ability to evaluate or estimate the attainability sets of quantum controllable sys-
tems. Approximations and estimations of attainability sets for quantum stochastic
differential inclusions are questions that have not been adequately addressed (if any
at all) unlike their classical counterparts (see [10,11] and the references therein).
Moreover in our bid to develop numerical schemes for quantum stochastic inclu-
sions of Lipschitzian, hypermaximal monotone and evolution types (see [5,6,7])
estimates of their attainability sets are crucial for the task.The development of
numerical schemes for quantum stochastic inclusions are very important since a
sizeable number of equations arising from applications are discontinous but can
be reformulated as regularized inclusions. Emphasis so far has been largely on nu-
merical procedures for continuous quantum stochastic differential equations with
high degree of smoothness of their matrix elements (see [2,3,4]). In this paper, we
present a method for approximating attainability sets for QSDI with a given accu-
racy.This is accomplished by adapting the techniques and arguments of Komarov
and Pevchikh [11] concerning classical inclusions to the present noncommutative
quantum setting involving inclusions in certain locally convex spaces.

The rest of the paper is organised as follows:- Section 2 is devoted to some
preliminary notations and statements of basic results of Ekhaguere [5] concerning
quantum stochastic generalization of the Fillipov existence theorem for classical
differential inclusions. The main result of this paper concerning the algorithm for
constructing the attainability set is established in Section 3.

2. PRELIMINARY NOTATIONS AND STATEMENTS
2.1. Notations

In what follows, as in Ekhaguere [5], we employ the locally convex topo-
logical state space A of noncommutative stochastic processes whose topology
is generated by the family of seminorms ||x||,: = [{n, x&)| x € An & eD ® IE.
Moreover, we adopt the definitions and notations of spaces Ad(A), Ad(A)wac,
LIIZ)C(A)’ L;(.)IUC(RJF)'

If A is a topological space,then clos(A) (resp. comp(A)) denotes the collec-
tion of nonvoid closed (resp. compact) subsets of A.

We employ the Hausdorff topology 7 on clos(A) determined by a family of
pseudo-metrics {0,¢(-), n,§ € ID® IE} on clos(A) as explained in Ekhaguere [5].

Copyright © Marcel Dekker, Inc. All rights reserved.
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Similarly, for A, B € clos(€) and x € €, the complex numbers, let
d(x, A) = inf|x — y|
yeA
6(A, B) = supd(x, B)

xeA

and
p(A, B) = max(8(A, B), §(B, A)

Then we employ the metric topology on clos(€) induced by p. The set-theoretic
operations are adopted as usual.

2.2. Quantum Stochastic Differential Inclusions

A multivalued stochastic process indexed by I € IR is a mutifunction on
I with values in clos(.A). As in Ekhaguere [5], the set of all locally p-integrable
multivalued stochastic processes will be denoted by L? (A)yus,p € (0, 00) while

loc

Llpoc(l X A)ys is the set of maps ® : [ x A+ clos(A) such that the map t
O(t, X(1) ,t € I liesin Lf (A)yys forevery X € LY (A).

For f,g € LY, (Ry), w € Ly, 1,.(IR+), 1 is the identity map on R ®
F(Lf,(ﬂh.)) and M is any of the processes A ¢, A;, Arands — sl,s € IR, then
the multivalued stochastic integral ft:JCI)(s, X(s)dM(s) is adopted as in
Ekhaguere [5].

For E, F, G, H lyingin LZZUC(I X A)mus, We consider the quantum stochastic
integral inclusion given by

X(1) € Xo + / (E(s, X(5))d Ax (5)+ F(s, X(s)dA 1 (s)

fo

+ G(s. X(s)dA} (s) + H(s, X(s))ds), tel, 2.21)

with initial data (¢y, Xo) as in Ekhaguere [5].

For arbitrary 7, & € ID ® IE, the inclusion (2.21) has been shown in [5,
Theorem 6.3] to be equivalent to the following first order initial value nonclassical
ordinary differential inclusion of nonclassical type

d
77\ X)) € P, X)), §)
X(t) = Xo, telty,T] (2.22)

Where P(t, x)(n, &) is a multivalued sesquilinear form on ID ® IE with values in
clos(@) (see [5, section 6] for details).

Next we summarise the result of Ekhaguere [5, Theorem 8.2] which gener-
alize the Fillipov existence theorem concerning classical differential inclusion to
the noncommutative quantum setting.
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Theorem 2.21 [5]. Assume that the following conditions hold

@ Z:I1- A lies in Ad(fl)wac such that there exists positive function
We(t) satisfying

d
d (E(n, Z(1)§), P(t, Z(1)(n, é)) = Wie(n)

(b) Eachofthemaps E, F, G, H is Lipschitzian from Q z ¢ to (clos(A), ty)
where

Ozo={t.x) el x A:|lx —Z(t)|ye <6,Yn,E e DRIE
and |lxo — Z(to)ll,s < 60}
(c) Forarbitraryn,E e DQIE,t €1,
t t
E.e(t) = llxo — Z(to)llne exp </ dsK,‘E(s)) +/ dsWye(s)

fo fo

X exp (/ drK,%(r))

If in addition,E, F, G, H are continuous from I x Ao (clos(ﬂ), Ty), then there
exists a solution ® of inclusion (2.21) such that

1P — Z(E)lne < Epe(), teJ (2.23)

and

d d
E(f/, O(1)§) — EW’ Z1)E)| < K (D) Eye (1) + Wye (1)
foralmostallt € J where J = {t € I : E¢(t) < 0} and K,fs I — (0, 00)is the
Lipschitz function for P lying in L} (I).

loc

3. THE ALGORITHM FOR APPROXIMATING THE
ATTAINABILITY SETS

Letn, & € ID ® IE be arbitrary. For simplicity of notations, we consider the
autonomous version of inclusion (2.22) given by

d
E(n,X(I)S) € P(X()(n, %)
3.1)

X(t) = Xo

In connection with subsequent results, we list the following statements
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(a) The multivalued sesquilinear form P(x)(n, £) is Lipschitzian with Lip-
schitz constant K¢, i.e

p(P(xX)(n, &), P, §)) < Kyellx = yllye Vx,y €A

(b) Foreachx € A, n, & € ID® IE, P(x)(n, &) is convex and compact in
€, the complex field and contained in a sphere of sufficiently large
radius r and centre at the origin.

(c) For ze A n ke ID®IE we denote by z,::=(n,z&) and
S-(zye) = {x € : |x — zy¢| < r}, the sphere of radius r centre at z,;
inC.

Definition. 3.1. Let X, € Comp(f{), né e ID®IE, we denote by X(t, X)
(n, &) := X(7)(n, &) the set in€ formed at the instance T > 0 by the endpoints of
the matrix element (1, ®(-)&) of solutions ®(-) of differential inclusions (3.1) that
starts in Xo , ¢ 1= {(n, x0§)/x0 € Xo}. X(7)(n, &) is referred to as the attainability
set of (3.1) at the instant t.

Next, we describe an algorithm for the numerical approximation of the at-
tainability set X (z, Xo)(n, £) in a given interval [0, T] and with a given accuracy.
Our method, which is an adaptation of the techniques and arguments in [11],
consists of constructing a multivalued map Y, : [0, T] + Comp(C) that satisfies
the inequality

p(X(t, X0)(n, ), Ye(1)) < €

V t € [0, T] and for arbitrary small number ¢, for each pairn,§ € D ® IE.

We fix an arbitrary g-net {X,} in A so that {(n, X, &)} is ag-netin €, the
complex field such that any bounded set in € contains only a finite number of
points belonging to the g-net {(n, X,&)},q € IR,.

We obtain an N equal partition of the interval [0, T] = {[t;, t;+1]i =0,
1,2...N — 1} of lengthh = L sothatt; = i, fp =0

We shall approximate X(¢)(n,&) by a mapping t > Y,:(f) such that at
the instants #;,i = 0, 1, 2..N, the set Y; ¢ := Y,(#;) are chosen from the g-net

{(n, X, &)} and for s € [#;, t; 1] they are given by
q

1
Yye(s) = E[YH]’"S(S — 1)+ Yipe(tiv1 — )] (3.2)

The algorithm for constructing the sets Y; ,z, i = 0, 1.2..N is as follows:
Yo, ¢ is an approximation of the initial set X ¢ = {(n, x0§)/x0 € Xo} by points
from the g-net {(n, X,&)} given by

Yone = {ugs € {(n, Xy8)}/duye, Xone) < q} (3.3)

MaRcEL DEKKER, INC.
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The sets Y; ¢, i = 1,2... N are given by the equality
Yie= |J WO (3.4)
Yne €Yio1ng

and

W(ne) = (o € (0. XgEVH[) Sqinr ) /(e Py — hP(p)(n. £)) <y

Where p,: = (n, p§) ype = (n, y&) forsome p,y € {X,} C Aand y =2q +
hKngq + herﬂf'

The formulae (3.2)—(3.4) define the map ¢ — Y,(¢) in the interval [0,T].
We have the following result.

Theorem 3.2. Let the parameters q and N be chosen such that
N> 4rT exp(T K ¢)

(3.5
€
KerT?
g < ”jv - (3.6)
Then the inequality

p(X(, Xo)n,8), Ype(t) <e€
Vit e[0, T] holds.

Proof: The proof will be accomplished in two parts. First we prove that
Ynne C X(T)(n, &) + Se(0) (3.7)

by taking an arbitrary point yy ¢ € Yy ¢ and show that a trajectory ®(-) of the
inclusion (3.1) exists such that

[P(T) — ynllps <€

where yy ¢ = (n, ynv&) for some member yy of the g-net {X,} C A.

From yy ,¢, we construct a sequence of elements y; ,¢,i =0,1...N — 1
such that y; ,e € Y ;¢ as follows:
If y; ye is already known, then we take an arbitrary element from the set

Yine — h P, &) + S, (0)

as yi—1,ne-
It follows from the definition of Y; ¢ that there exists at least one point
Yi—1,ne € Yi_1 ;¢ since

(ime = hPG)(1, &) + Sy (O) [ Y10 # 0.

Copyright © Marcel Dekker, Inc. All rights reserved.
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By the definition of Y; ;¢, yo,5¢ € Yo,,¢ implies that

d(yo,n. Xone) = 9.

The distance between y; ¢, and y;41 ,¢ can be estimated as follows:
Let y; pe € Yi e then
Yie € W(yye) for some y,. € Yi_y e

e |yine — Vel <q+hr (3.8)
and yi 416 € Yit1,0e implies that y; 1 5 € W(y,,) for some y;. € ¥i e

e |yirine — Vel <q+hr (3.9)
setting y; ¢ = ¥,z € Yi ¢, then from (3.9)

|Yit1mg = Ying| < q + hr

ie |yis1 —yillpe <q+hr <y+hr Vi

We now consider a complex valued map defined by

1
Zye(s) = E[(IHI — 8)Vige + (5 — 1;)Yir1,5¢]

forselti, ti1],i =0,1,2... N — 1.Clearly, Z,£(t;) = yineandfors € [t;, t;11)

d 1
%Z”E(s) = E()’i+l,n§ — Yine)

Again, since

Ying € Yitige —hPir)(®,§) + S, (0)

then,

d 1
75 Zne () =7 Gitrng = Yine) € POig1)(n, &) + %51(0) (3.10)

for some map Z : I > A. It is clear that Z is weakly absolutely continuous by
definition.
Inclusion (3.10) implies that

d
d<_d (n, Z(s)§), P(Z(ti+1))(7]»$)) < Y (3.11)
s h

By the noncommutative quantum version of the Filipov Theorem (2.21), there
exists a solution ® of (3.1) with the initial condition ®(0) = xy where |xo —
Yollne < g such that forallz € [0, T],

@) = Z(Dlye < EQ@)

Copyright © Marcel Dekker, Inc. All rights reserved.
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where

E(t) < g + fo l d(%m, Z(5)&), P(Z(s))(n, s)>e’<~é<’—°‘>ds (3.12)
‘We now estimate

d
d<d—(n, Z(s)§), P(Z(s))(n, é)).
S

First we claim that

lyie1 = Z($)llye <y + hr.
This follows since by definition of Z,¢(s) above
1
Z(s) = E[(tiJrl =)y + (s —1:)yit1]
so that

Z(s) | s —t tit1— S
i+1 — 4(S) = - i+1 — i
Yi+1 7 Yit1 7 y

Hence

lyier — Z()ne < 1yie1r — Yillye <y + hr

Now we have

d
d<d—(n, Z(s)§), P(Z(s))(n, E))
S
d
< d(g(n, Z($)§), P(yi+1)(1, E)) + p(P(yi+1)(1, §), P(Z(s))(n, §))

d
< d(gm, Z()5), P(yi+1)(, E)) + Kellyivr — Z($)l e
< % + Kye(y +hr) i= Dy,
by using (3.11) and the fact that P(x)(n, &) is Lipschitzian.
From (3.12), we obtain the estimate

t
|P@) — Z(l)”ng < qekﬂét + / Dnsekng(f—s)ds
0
so that by evaluating the integral in the last inequality, we obtain

DE Dné
(1) — Z(D)llpe < e’%’(q + —”) -—r.
! Kné Kné

The last inequality holds in particular forz = T

Copyright © Marcel Dekker, Inc. All rights reserved.
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If the parameters N and g are chosen such that inequality (3.5) and (3.6) are
satisfied then

[P(T) — Z(T)llye < €

i.e. expression (3.7) holds.
Similar constructions can also be carried out for all ¢;,i =1,2...N — 1
and so the inclusion

Yoe(t) C X(1)(n, &) + Se(0)

holds for all i.

Again, following Theorem (2.21) and the choice of ¢ and N, this inclusion
is also true for all s € [¢;, #;11].

To complete the proof, we need to show that the opposite inclusion

X(1)(1, &) C Yye(r) + Se(0) (3.13)

holds V¢ € [0, T'].
To this end we employ the following Lemma as in [11].

Lemma 33. If Xo, C Yo + S,(0) then X(1:)(n, &) C Yye(t;) + S,(0)Vi =
1,2...N.

Proof: Let the assertion of the Lemma hold for all i =0,1,2...[. Then we
shall show that it holds fori = [ + 1 as well and so holds foralli =0,1,2...N.
We fix an arbitrary point x;1 ¢ in X(f,41)(n, &). In the g-neighbourhood of this
point in €, there is a point y;; ¢ belonging to the g-net {(n, x,&)} such that
Vi+1ne = (1, yi+1&) for some y;4; in the g-net {x,} C A. We shall show that
Vi+1,n¢ € Y1 0. As aresult, this will establish the assertion of the Lemma.

We denote by x,¢(-) the matrix element of the weakly absolutely continuos
trajectory x(-) of the inclusion (3.1) that leads to the point x;41 ¢ in X(%)(n, &).
Let x,¢(-) start at some point x; ,¢ in X(#)(n, §). In the g-neighbourhood of x; ¢
there is also a point y; ,¢ from the net {(n, X,&)} such that y; ,e = (n, ;&) for
some member y; € {X,}.

To prove that y;1 ¢ € Yi41 5 it suffices to show that the inequality

A1, — P Yiy1)(1,8), Yige) < v

is satisfied. We have

Ay nes Yigrqe — hP(i+1)(, €)) = [Vit1.0e — Bfype — Yinel

min
Fre €Pr+1)(0,6)

[ Vi1, — Xi1,0e + X410 — Pfne — Yige + X e

= min
foe€Pi+1)(n,6)

—X1 el <2q + min X141, — Afpe — Xi.ne
e 4T ePOunme T Fre = Xine

Copyright © Marcel Dekker, Inc. All rights reserved.
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Since x; ¢ € X(1)(n, &) then by our hypothesis and the construction of the se-
quence of elements of Y,:(#;), we have

0
Xing = Xi+1,ne — hf e + do

where f,% € P(x;+1)(n, §) and dy € Sp2,x,, (0) C S, (0).
We finally obtain

d(yr,ne, Yi+1,0e — AP(i41) (M, €))
< hp(P(yi+1)(1, &), P(xi1)(nE)) + 2q + h*rK e

<2q + hKye|yistne — X1 ge| + B2 rKpe
<2q +hgK,: + her,]g =y

Since x;11,¢ € X(#141)(n, &) is arbitrary, it follows that

X(1111)(n, §) C Yye(ti1) + 54(0)

thus proving Lemma (3.3).

Since g < e, it follows from the Lemma that the inclusion (3.13) holds
Vt;, i=0,1,2...N.

It follows from Theorem (2.21) that (3.13) holds for intermediate values

of t.
This complete the proof of Theorem (3.2). O
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Abstract

We establish the existence and some properties of viable solutions of lower semi-
continuous quantum stochastic differential inclusions within the framework of the
Hudson—Parthasarathy formulations of quantum stochastic calculus. The main results
here are accomplished by establishing a major auxiliary selection result. The results
here extend the classical Nagumo viability theorems,valid on finite dimensional
Euclidean spaces, to the present infinite dimensional locally convex space of non-
commutative stochastic processes.

Keywords Lower semicontinuous - Nagumo viability - Tangent cone - Fock spaces
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1 Introduction

This paper continues our previous works in [4-9,12—16,19,20]. On this occasion, the
existence and some properties of viable solutions of lower semicontinouos quantum
stochastic differential inclusions (QSDI) are established. In our previous considera-
tions, existence of solutions were sought and established globally in the locally convex
space of solutions. In this work, the global requirement are removed by restricting the
solution space to a subset of the entire space satisfying some topological conditions.
By employing the multivalued analogue of quantum stochastic calculus developed by
Hudson and Parthasarathy [17], in the framework of [13,19] the main results of this
paper are established.
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It is well known that classical differential inclusions could be solved by reducing
them to differential equations through selection theorems. By employing a similar
idea, this paper employs a non commutative generalization of Michael selection
result established in [20] to transform the lower semicontinuous quantum stochas-
tic differential inclusions under consideration to a quantum stochastic differential
equation.

The existence of viable solutions of differential equations and inclusions defined
on finite dimensional Euclidean spaces have been well studied, see, for example [1-
3,10,11,18,21,22]. However, similar classes of problems have not been well studied
for QSDI. This is a major motivation for this work. In the classical finite dimensional
setting, a necessary and sufficient condition for the existence of viable solutions was
established by Nagumo [22] in which the closed subset K, which is the viability
subset is bounded and satisfy the tangential condition. Other researchers have simi-
larly worked on further developments, and the extensions of Nagumo theorems and
applications see [10,11,18,22].

However, for the Nagumo-type fixed point results to work in the present non com-
mutative settings, this paper first established an auxiliary result by circumventing
certain difficulties using the unique properties of the family of seminorms that defines
the topology for the underling locally convex space of non commutative stochastic
processes.

The rest of the paper is organized as follows: Sect. 2 is devoted to the prelimi-
naries and some notations. The main results on viability of solutions including the
convergence of approximate solutions are established in Sect. 3.

2 Preliminaries

Let D be an inner product space and H, the completion of D. We denote by L™ (D, H),
the set {X : D — H : X is a linear map satisfying Dom X* 2 D, where X* is the
operator adjoint of X}.
We remark that L (D, H) is a linear space under the usual notions of addition and
scalar multiplication of operators.
In what follows, D is some inner product space with R as its completion, and y is
some fixed Hilbert space.

For each t € R, we write Lf,(RJr), (resp. L}z,([O, 1)) resp. L%,([t, 00))), for the
Hilbert spaces of square integrable, y-valued maps on Ry = [0, 00), (resp. [0, ¢);
resp. [t, 00)). Then we introduce the following spaces:

() A=LTDQE, R® I'(L3(R)).

(i) A =LTMQE, R I(LL(0.0)) 1",
(i) A/ =1, @ LY (DQ E', R ® F(L)z/([t, 00))), t >0
where ® denotes algebraic tensor product and 1, (resp. 1) denotes the identity map
on R ® I'(L ([0, 1)))(resp.I" (L2 ([1, 00))), ¢ > 0. We note that A’ and A;, > 0,
may be naturally identified with subspaces of A. For n, £ € D® E, define || - || ;¢ on A

by llxllpe = [{n, x&)|, x € A. Then {|| - l,;¢, 7, & € D® E} is a family of seminorms
on A; we write t,, for the locally convex Hausdorff topology on A determined by this
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family. We denote by A, A, and A" the completions of the locally convex topological
spaces (A, 1), (A;, Ty) and (A’, 7,,), t > 0, respectively.

We define the Hausdorff topology on clos(.Z) as follows: Forx € A, M, N €
clos(A) and n, £ € DQE, define

pne (M, N) = max(§,e (M, N), 8, (N, M))

where
Spe M, N) = sup d,z(x, N) and

xeM

x,N) = inf || x — .
dye ( ) Jnf, I v llne

The Hausdorff topology which shall be employed in what follows, denoted by, ty
, is generated by the family of pseudometrics {p;z(.) : n§ € DQE}.
Moreover, if M € clos(A) , then || M ||, is defined by

I M llne= pne (M, {0});

for arbitrary 1, § € DQE.
For A, B € clos(C) and x € C, a complex number, define

d(x,B) = inf |x —y|
yeB

8¢ (A, B) = sup dg (x, B) and
xeA

o(A, B) = max(5(A, B), 5(A, B))

Then p is a metric on c/os(C) and induces a metric topology on the space.
We define the Hausdorff topology on clos(A) as follows: Forx € A, M, N € clos(.A)
and n, § € DQE, define

pne (M, N) = max(8,e (M, N), 8,6 (N, M))

where
8ye (M, N) = sup dyz(x, N) and
xeM

d,:(x, N) = inf || x — .
ne ( ) yeN|| y llne

The Hausdorff topology which shall be employed in what follows, denoted by, g , is
generated by the family of pseudometrics {pys (.) : n§ € DQRE}.

Definition1 Let I C Ry,

1) Amap X : I — Ais called a stochastic process indexed by /.
(i1) A stochastic process X is called adapted if X (¢) € A, foreachr € I.
We denote by Ad(A) the set of all adapted stochastic processes indexed by 7.
(iii) A member X of Ad(A) is called
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(a) weakly absolutely continuous if the map ¢t — (n, X (#)€), t € I, is absolutely
continuous for arbitrary n, £ € D® E. We denote this subset of Ad (A) by
Ad(A)wac-

(b) locally absolutely p-integrable if || X (-) ||Z§ is Lebesgue measurable and inte-
grable on [19,¢) C I foreacht € I, p € (0, oo) and arbitrary n, { € D® E.
We denote this subset of Ad (fl) by Lllj) . (fl).

Stochastic Integrators: Let B(y) denote the Banach space of bounded endomorphisms
of y and let the spaces L;?IOC(RJF) and L%O(y)’loc(]RJr) be defined by: L]‘floc(RJr) =
{f : Ry —> y|f is linear, measurable and locally bounded function on R, }.
L%o(y),loc(RJr) = {7 : Ry — B(y)|n is linear, measurable and locally bounded
function on R, }.

For f e L, (Ry) and m € Ly, (Ry), we define 7 f € L7, (Ry) by

Tf)(t) =a(@t)f(t), t € Ry. Also, for f € LJ%(RJF) and 7 € L?(y),loc(R-F)’ we

define the operators a(f), a™(f) and A(7) in LT (D, F(LJ%(RJF))) as follows:

a(fle(g) = (f. gL, (Ry)e(g)

N d
at(fle(g) = -—e(g+0of)lo=0
d
)»(ﬂ)e(g) = %e(e‘mf)w =0

forg € Li(RJr).

The operators a(f), a™(f) and A(w) for arbitrary f € L;floc(R+) and m €

L (R) give rise to the operator-valued maps A 7, A;Z and A, defined by

1090(;/),100
Af () = a(fxI0,1)
AL =a*(fx[0,1)
Az (1) = (X0, 1))

t € Ry where x; denotes the indicator function of the Borel set I C R .

The operators a( f), a™(f) and A(r) are the annihilation, creation and gauge oper-
ators of quantum field theory. The maps A, A‘}' and A are stochastic processes,
called the annihilation, creation and gauge processes, respectively when their values
are identified with their ampliationson R® I" (L)z, (R4)). These are the stochastic inte-
grators in the Hudson and Parthasarathy [17] formulation of Boson quantum stochastic

integration which we adopt in the sequel.

2.1 Quantum stochastic differential inclusion

Definition 2 (1) By a multivalued stochastic process indexed by I € R4, we mean a
multifunction on I with values in clos(.A).
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(2) If @ is a multivalued stochastic process indexed by I € R, then a selection of @
is a stochastic process X : [ — A with the property that X (¢) € @ (¢) for almost
allt € 1.

(3) A multivalued stochastic process @ will be called (i) adapted if @ (1) < jl, for
each t € R ; (ii) measurable if t — d,¢ (x, @(t)) is measurable for arbitrary x €
A, n,§ € D® E; (iii) locally absolutely p-integrable if > [|@ (*)|l;¢, 1 € Ry,
liesin LY (I) for arbitrary £ € D® E

loc

The set of all locally absolutely p-integrable multivalued stochastic processes will
be denoted by loc(A)mvs For p € (0,00)and I C Ry, IOC(I X A)mw is the set of
maps @ : [ x A — clos(A) such thatt — @ (¢, X(1)), 1 € I, lies in Lloc(A)mvs
every X € LY (A).If ® € L? (I x A)mus, then

loc loc

L,(®)={pc lOC(A) ¢ is a selection of @}

Let f,g € L;’?yloc(RJr),n € L%O(T)JOC(RJF),I is the identity map on , R ®
F(L)Z/(R+)), and M is any of the stochastic processes A ¢, A;, Ayr,ands +— sl,s €
Ry. We introduce stochastic integral (resp. differential) expressions as follows. If
@ e L? (I x Apps and (1, X) € I x L2 (I x A), then we make the definition

loc loc

t t
/ D(s, X(s))dM(s) = {/0 o(s)dM(s) : ¢ € L2(d>)}
t t

0

This leads to the following definition.

Definition3 Let £, F, G, H € L? (I x A)uys and (19, xo) be a fixed point of 1 x A.
Then, a relation of the form

dX (1) € +E(t, X(1)d Ax (1) + F (1, X(1)d Ay (1)
+G(t, X()dAF (1) + H(t, X(1)dt, 1€, @)

is called quantum stochastic differential inclusions(QSDI) with coefficients in E,F,G,
H and initial data (7, xo).

Equation (1) is understood in the integral form:

t

X(t) € xo + [ (E(s, X(5)d Az (s) + F(s, X(s))dAs(s))

]

+G (s, X(s))dA;(s) + H(s, X(s))ds), tel,

called a stochastic integral inclusion with coefficients E,F,G,H and initial data (¢, xo)
An equivalent form of (1) was established in [13], Theorem 6.2 as follows: For n, & €
D® E.a,B € L3(Ry) with n = ¢ ® e(a), § = d ® e(B).define the following
complex-valued functions:

Map, Vg, 0q : I —> C, 1 C Ry, by
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Hap (1) = (a(r), T ()B(1))y
vp(t) = (f (1), B(1))y
ou (1) = (a(1), g(1))y

tel, f,ge Li’loc(R+), T e LOBO(V)’IOC. To these functions we associate the maps

WE, vF,oG, P from I x Ainto the set of sesquilinear forms on D® E define by

(WE)(t,x)(1, §) = {(n, tap () p(t, )&) : p(t, x) € E(t, x)}
WF)(t, x)(n.§) = {(n, va(1)q(t, x)&) : q(t,x) € F(1,x)}
(0 G)(t, x)(n,§) = {(n, oa®u(t, )&) : ut, x) € G, x)}
Pop(t, x) = papE(t, x) +vg(t)F(t, x) + 0 ()G (t, x) + H(t, x)
P, x)(n, &) = (n, Pap(t, x)§),i.e
P, x)(n,§) = (WE)(@, x)(n, §) + wF)(, x)(1, §)
+(0G)(t, x)(n.§) + H(t,x)(0,§)
H(,x)(n, &) = {v(t, x)(n, &) :v(., X(.)) is a selection of H(., X (.))VX € leoc(ﬁ)}

@
Then problem (1) is equivalent to
d
7 X0E) € P(r, X(1)(n, §)
(n, X(10)§) = (1, x0§) 3

for arbitrary 1, £ € D® E and almost all # € /. Hence the existence of solution of
(1) implies the existence of solution of (3) and vice-versa. As explained in [13], the
sesquilinear form valued map P:

P(t, x)(n, &) # P(t, (n, x&))

For some complex-valued multifunction P definedon I x C fort € I ,X € A, n, & €
D E.

Before proceeding to the proof of the main result in this work , we make use of
a result in [20] in which the multifunction (¢, x) — P(¢, x)(n, ) is lower semi
continuous with respect to the seminorm ||.||;¢, closed and convex.

then there exists a continuous selection, P : I x A —> sesq(D®E) of P such that

d
7 X(D8) = P, X(1))(7n. £) @

(n, X(10)§) = (n, x05) a.e 1t € 1

for arbitrary pair n, § € DQE) ,(t, x) —> P(t, x)(n, §) is continuous.
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3 Viability theory

Definition4 Let P : I x A —> sesq(DQ [E)? be a sesqulinear valued funtion, then
the subset K of A is viable with respect to P if for every (#, xo) € I x K there exists
T €1, T > to such that Eq. (4) have at least one solution K.

Definition 5 Let K € A, Asubset K € clos(A)is locally closed if K (17, &) is a closed
subset with values in C then K (1, &) is locally closed if for each x,¢ € K (n, &), there
exists p > 0 such that D(x¢, p) N K (n, &) is closed for arbitrary pair n, § € DQE.

We now define tangent cone as it applies to our non commutative settings. We make
use of Bouligand—Severi tangency concept in [11].

Definition6 Let K C A, E C A such that K(n,€) € C,E(n,€) C Cand x € K
such that x,e € K(, &) C C. Then the set E(, &) is tangent to the set K (5, £) at the
point x,¢ if

1
liminf —d(x,e +hE1, €); K(,£)) =0
h—0 h

We denote by Tk ;,¢) the class of all sets which are tangent to K (5, £) at the point
xpe for arbitrary n, £ € D® E.

Proposition 1 The set Tx (. £) (xy¢) of all vectors which are tangent to the set K (1, &)
at the point xy¢ is a closed cone.

Proof Let (x,¢) € K(n, &) According to definition 6, E(n, &) € Tk () (xpe) if
1
liminf —d(xpe +1E(n, §); K(1,§)) =0
t—0 t
Let s > 0, we observe that
1 1
liminf —d(xye +tsE(n, &); K(n, §)) = sliminf —d(x,e +tsE(n, £); K(, £))
t—0 f t—0 ts§

1
= sliminf —d(x,z + TE(n, §); K(1, §))
>0 T

Hence, sE(n, §) € Tk (xy¢) To complete the proof, we need to show that Tk (x;¢) is
a closed set.

Let N* be the set of strictly positive natural numbers. Let (E,; (1, £)),en+ be a
sequence of elements in 7k (x,¢), convergent to E (1, &) then we have

1 1
;d(xng +1EM,§); K(1,§)) = " [1(E(, &) — Ex(n, §))]

1
e +1E. (0. £): K (1. 8))
=|E®m, &) — Ex(n, )|
1
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for every n € N*. So

1
liminf —d (xye +1E(1. £); K(0,) < |E1.§) = Ea(n, 8]

for every n € N*. Since lim,,, o |E(1, ) — E,(n, §)| = 0, it follows that

1
liminf —d(xps +tE(, £); K(n,§)) = 0.
t—0 t

which shows that the set Tk, £) (x;¢) is a closed cone and this achieves the proof. O

Proposition2 A set E(n, &) € C belongs to the cone Tk (y.¢)(xy¢) if and only if for
every € > 0 there exists h € (0, €) and qne i € Dye(0, €) with the property

Xpe +h (EM. &) + quen) € K1, €)

Proof We see that E(n, &) € Tk y.£)(xye) if and only if for every € > 0 there exists
h € (0,¢€) and pye p € K(n, §) such that

1
E|xn&‘ +hE®, &) — ppenl < e.

let

1
qneh = E(Pné,h —xpg —hE®, §)),
and we have both |gye 5| < € and xpe +h(E1, &) + qne,n) = ppen € K(n,§). O

3.1 Main result

In this section, we establish the quantum generalization of Nagumo viability result.

Existence of Approximate Solutions : Let (79, xo,,¢) € I x K (1, §), then there exists
p > 0, such that D(xo ¢, o) N K(n, &) be closed, then there exists My > 0, such
that

|P(t,x)(n, §)| = My )

forevery t € [t9, T]and x € Dys(x, p) N K C A and Xpe € D(x0,06, 0) N K(n, &)
and

(T —t0)(Mye +1) < p (6)

The existence of these three numbers will be made possible because K (1, &)
is locally closed and by the continuity of P which implies its boundedness on
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[t0, T1x D(x0, ¢, p), and so the existence of My¢ > 0,and the factthatT € I, T > 1,
is chosen very close to fy. The following lemma concerns the existence of family of
approximate solutions for the problem defined on interval [7, c].

Lemma 1 Suppose K C A # O satisfying the following

(i) K is local~1y closed.
(ii) P: I x A—> sesq (]D)@IE)2 is continuous.
(iii) P(to, x0)(n, &) € Tic(=,~)(x0,n¢) for each (to, x0) € I x K.

Then, for each € € (0, 1), there exist: a non decreasing function
o:[ty, T] — [t, T]
and two stochastic processes
gl T1— A (N
and
¢, T]— A

lying in Ad (A wae N L2 (A) such that the corresponding sesquilinear form valued

loc

maps associated with any pair of n, § € DQE) given by

g: [, T] — sesq(]D@IE)2

such that
g, &) = (n, g(1)§)
and
¢ : [10, T] — sesq(DRE)?
such that

), &) = (n, p()§)

satisfy the followin

(i) t —€e <o(t) <t foreveryt € [ty, T]
(i) |gne ()] < € foreveryt € [ty, T]
(iii) @ye(o(t)) € D(xo,pe, p) N K(n, &) foreveryt € [to, T] and
@ne(T) € D(xo,0¢, p) N K (1, &)
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(iv) o satisfies

t

t
P(U(S),fp(G(S))(n,E)ds+/ g(s)(n, §)ds

0]

{n, (&) = (n, xo§) +/

10
foreveryt € [ty, T]

A pair of the triple (o, g, ¢) as in Eq. (7) with the associated (o, gne, @y¢) satisfying
(i), (ii), (iii) and (iv) above is called an €- approximate solution to the problem (4) on
the interval [ty, T].

Proof Letty € I, x0.0¢ € K(n,&)andlet p > 0, M > 0and T > 1 be as above. Let
€ € (0, 1) . We first show the existence of an €- approximate solution on an interval
[to, c] with ¢ € (19, T'].

Since for every (to, x0,,¢) € I x K(n,§), P(ty, x0)(n, &) € Tici= ~)(x0,5¢), from
Proposition (2), it follows that there exists ¢ € (fp, T, ¢ — t9 < € and gy¢ 5 has values
in C with | g,¢ 5 | < € such that

x0,5¢ + (¢ — 10) P(t0, x0)(n, &) + (¢ — to)que, h € K(n,§)

Let I, = [t9, c] , we now dgﬁne the functions o : [{0, c] — [n, CJ, and stochastic
processes g : [tg,c] — A and ¢ : [fg,c] —> A lying in Ad(A)yqe N LIQOC(A)
satisfying

o(t) =19 for t € [tg, cl, ,
gne (1) = qne fort € [19, cl,
@y (1) = x0,5¢ + (1 — 10) P (t0, x0) (1, §) + (t — to)gns fort € [to, c].

The triple (o, gy¢, ¢y¢) is an € approximate solution to the problem (4) on the
interval [fg, ¢]. This shows that conditions (i), (ii) and (iv) are satisfied, we now
show that condition (iii) is also satisfied using (5), (6) and (i). From (i) o (¢) = 1y
and (n, X(10)€) = (n,x0&) .then (n, (o (1)) = (n,xo&), therefore we have

po(®)(n,&) € D(xo,5¢, p) N K(n, &) for every t € [to, c]. Therefore, p(c)(n, &) €
K (n, &). However, by (5) and (6),we have

lp(©)(n,8) — o, ) = (c —10) | P(t0, 90) (0, §)| + (¢ — 10) |q|
=T —1)My:+1) =<p

For every t € [#y, c]. Thus (iii) is also satisfied.

We now define the e — approximate solution on the whole interval /. We make use
of Brezis—Browder theorem in [8]. Let S be the set of all e—approximate solutions
to the problem (4) defined on the interval [#g, c] with ¢ € (fp, T]. On S we define
the relation *“ <" by (01, g1,9¢, @1,5¢) = (02, 82,4, ¥2,n¢) if the domain of definition
[to, c1] of the first triple is included in the domain of definition [#g, c;] of the second
triple, and the two e—approximate solutions coincide on the common part of the
domains. Then, “ <"is a pre-order relation on S. Firstly, we show that each increasing
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sequence ((O, m,ne» Pm,ye))m 1S bounded from above . Let (0, &m,ng» Pm,ng)Im
be an increasing sequence, and let ¢* = lim,,c,, where [tg, ¢;;] denotes the domain
of definition of (oy,, &m, e, ¥m, ne). Then c* € (1o, T].

We will show that there exists at least one element, (o *, g;;s, <p;’7‘$) € S, defined on
[t0, ¢*] and satistying (0, &m ne. ¥m) =< (07, g;g, x:;é_) for each m € N. In order to
do this, we first prove that there exists lim,, ¢, (c,) (1, ).

For each m,n € N, m < n we have u,,(s) = u, (s) for all s € [y, ¢, ]. Taking into
account (iii), (iv) and (5), we have

| O (Cm) (1. &) — @) (0. €) | < / " P(0u(s). g (0n(s)) (1, £) | ds

+/ " (), 8) | ds

= (Mpet+€)lcn—cml
for every m, n € N, which shows that there exists
lim @ (cm) (M, §) € D(xo,ne, p) N K(n, §)
m— o0

Furthermore, because all the functions in the set {0;, : m € N} are non decreasing,
with values in [#y, c*], and satisfy

om(cm) < oplcp) for every m, p € N, there exists lim, s o0 0/ (cin), then the
limit exists and belongs to [#, ¢*]. We now define a triple function (o*, g%, (p;';g) :
[t0, ¢*] —> [t9, ¢*] x C x C by

‘(1) = o (1) fort € [tg, cu], m € N,
o | lim o,(c,) fort=c*,
mr= oo
£ (1) = gm()(n, &) fort € [to, cm],m € N, forall n, & € DQE),
Sl = 0 fort = c*,
. Oom ), &) fort € [to, cu],m € N, forall n, & € DQE),
i = Jim g (en)(1. &) fors = c*,
m—= 00

This shows that (o, g;‘s, 9":5) is an e- approximate solution which is an upper bound
for ((om, &m,ng» Pm,ne))m- Applying (ii) of Brezis—Browder theorem, we define the
function

M :§ — R U {400}. Then, for each ¢y € S there exists an M- maximal
element ¢ € S satisfying £op < ¢. This shows that M ((o, gne» Pne)) = ¢ where [fo, c]
is the domain of definition of (o, gy¢, ¢,¢). Then M satisfies the hypothesis of Brezis—
Browder theorem . Then, S contains at least one M- maximal element (G, gy¢, @pe)
defined on [fo, ¢]. In other words, if (7, g,¢, @pe) € S, defined on [19, C], satisfies
(0, 8ye» Pne) < (G, &y, Pye ), then we necessarily have ¢ = ¢. We will show next that
¢ = T. we assume by contradiction that ¢ < T . Then, taking into account the fact
that ¢,z (¢) € D(x0,5¢, 0) N K(n, &), we have
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| @ne () — x0,p¢ |

5/ |P(6(s),¢(6(s)))(n,$)Ids+/ | &(n,&)(s) | ds
to

0]
< (¢ —10)(Mpz + €)
= —10)Mpz +1) < (T —t0)(Mys +1) < p

Then, as ¢u:(c) € K(n,§) and P(c, ¢(c))(n,§) € Tk (@(C))(n, &), there exists
8(0,T —¢),8 < € and ge € Csuch that | g,z |< € and

Png(€) +8P(c, 9(©) (0, &) + dqns € K(1,§)

From the inequality above we have

| @(c)(n, &) +8[P(c, p())(n. &) + que]l — po(n. §) = p

We now define the functions o : [tg, ¢ + 8] —> [t9,c + 8] and g : [tp,c + 5] — C
by

{a(z) for t € [to, ¢l
o) = _
¢ fort € [¢, ¢ + 6],

) = gne(t) fort € [ty, c], and for any n, & € DRQE),
gnel) =1, fort € [¢, ¢ + 51,

so | gue (1) |< € forevery t € [ty, ¢ + 8]. In addition, for every ¢ € [ty, ¢ + 8], 0 (1) €
[70, ¢] and therefore ¢(o () is well-defined and belongs to the set D (xg ¢, p) N K.
Accordingly, we can define ¢, : [to, ¢ + 8] — C by

t t
(. (&) = (ﬂJPOEH—/ P(U(S)@(G(S)))(mf)dﬂr/ g, §)(s)ds

fo fo

for every t € [to, ¢ + 8]. clearly, ¢, ¢ coincides with ¢, ¢ on [f, ¢] since the domain
[70, c] is included in the domain of [c, ¢ + 8] and then it readily follows that ¢, ¢, o
and g, ¢ satisfy all the conditions in (i) and (ii). In order to prove (iii) and (iv) we
observe that

@ne (1) for t € [tg, ¢].

e = {‘Pné(f) + (1 = OPE @@)E) + (1 — &g fort €[¢,¢+0]

Then ¢, satisfies the equation in (iv). since

@ne (0 (1) fort € [to, C].

Prelo 1) = {@ns @  fort e lto, &+ 6]
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it follows that ¢,z (0 (1)) € D(x0,5¢, p) N K.
Furthermore, from the choice of § and g, we have both ¢, (¢ +6) = @y (c)(n, §) +
SP(c,p(c))(n, &) + g € K(n,&) and

[ o(c+8)(n, &) —xo(m,8) |
=|@@)(n,8) +3P(,9() (1, &) +3q —x0(n,§) |
<p

and consequently, ¢,¢ satisfies (iii). Thus (o, gye, ¢pe) € S. Furthermore, since
(0, 8ne, Pye) =< (0, gye, ¢ne) and ¢ < ¢ + 8, it follows that (o, gye, @ye) is not a
M- maximal element. But this is absurd, we can eliminate this contradiction, only if
each maximal element in the set S is defined on [7, T]. Hence ¢ = T.

Theorem 1 Let K C A Assume that the following conditions hold:

(i) Themap (t,x) —> P(t, x)(n, &) associated with the right hand-side of equation
(4) is continuous.
(ii) K(n, &) is non empty and locally closed
(iii) There exists Mys > 0 such that |P(t, x)(n,§)| < Mg foreveryt € [ty, T] and
x € D(xo,ne, p) N K(n,§)
(v) (T —1t0)(Mps +1) < p
Then K (n, &) is viable with respect to P if and only if for every (ty, xo) € I x K we
have P (1o, x0)(n, §) € Tic(=,~)(X0,n¢)
Proof The proof is divided into two parts; We proceed as follows: If Part: Suppose
K (n, &) is viable with respect to P, then there exists a solution ¢ that satisfy Eq. (4).
Let (#o, x0,5¢) € I x K(n, &) , We prove that

1
Jim Ed(Xo,ng + hP(to, x0)(n, §); K(n,§)) =0.

then, there exists T € I, T > tg, and a stochastic process ¢ € K with (n, ¢(t))§) €
K (n, &) satisfying Eq. (4).

d(xo,5¢ +hP(t0, x0)(1,8); K(n,§))
< |x0.5e + R P (to, x0) (0. &) — @(t0) (0, )|

o1
= ;}Eﬂ)ﬁ |x0.56 + B P (1o, x0) (1, &) — (n, (to + h)E)|

(n, (p(to + 1) — 9(10)§) '
h

(n, (¢(to + h) — ¢(10)§) ’
h

= }}1:)1}) ‘P(lo, @(10)(. &) —

_ ‘ P(to, 9(10)) (1, §) = lim

1=ty

d
=0
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This shows that the stochastic process ¢ is a solution to Eq. (4) and belongs to K.

Only If Part Suppose P (to, x0)(1, &) € Ti(=,~) then we prove that P is viable to
K.

This concerns the existence and convergence of approximate solutions.

The proof is divided into two steps. The first step is concerned with the proof of
existence of a family of “approximate solutions” for the problem defined on interval
[0, c] with ¢ € I and later showed that the problem above admits such approximate
solutions, all defined on an interval [fy, T'] independent of the “approximate order”.
The proof of the approximate solution is given by lemma 1 Finally, in the second step,
we shall prove the uniform convergence on [#, 7] of a sequence of such approximate
solutions to a solution of the problem (4). O

3.2 Convergence of approximate solutions

Let (ex)ren be a sequence from (0, 1) decreasing to 0 and let (0%, gye &, ¥ye, k) keN be
a sequence of €;- approximate solutions defined on [7g, T'].
From (i) and (ii), it follows that

lim oy (t) =t and lim gy x(r) =0 )
k00 k00
uniformly on [y, T']. On the other hand, from (iii), (iv) and (6) we have

[(n, o (1)E)]
< (n, (@r(t) — @o)&)| + [{n, pok)|
T

T

Sf | P(ox(s), px(0x(s))(n, &) | ds +/ lgx(s)(n, &)lds + |@o, ye]
to to

S (T —t0)(Mys + 1) + |oolye < 0+ l@o,yel

for every k € N and every t € [fg, T]. Hence, the sequence (¢r)ren 1s uniformly
bounded on [fy, T']. Again from (iv), we have

10, @i (1) — i ()§)]
t d t
< I/ E(n,wk(t)é)dtolﬂf I{n, gk (10)§)|d1o |

<| P(ox(s), g (0w (s))(n, &) | ds + |gx(s)(n, §)|ds
<My + 1) |t — 5|

for every t,s € [fo, T]. Consequently the sequence (¢r)reN 1S equicontinuous on
[0, T']. However from Arzela - Ascolis theorem there exists at least a subsequence of
(@yé.k)ken that is uniformly convergent to some point @y . i.e there exists a stochastic
process ¢ : [tg, T] —> A lying inAd(fl)waC N LIZOC(/I) such that e = (1, &) and
@ne ke = (0, &) then,

lim (n, g§) = (n, lim @§)
k— 00 k—o00
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= (n, §)

Now using (iii), (8) and of the fact that D(xg y¢, p) N K (1, §) is closed, we conclude
that ¢(2)(n, §) € D(x0,5¢, p) N K(n, &) forevery t € [t, T].

t t

P(Uk(to),wk(ak(S)))(ﬁ,E)dS+/ gk(s)(n, §)ds

]

(0, oe(DE) = (1, 9ok) +/

1o
now, taking the limit of the above and using (8), we have that

t

(0. 9(OE) = (0. 9o&) + f P(s, 9(s) (1E)ds

1o

for every ¢ € [to, T], which gives the proof of the theorem.
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Abstract

Under a more general Lipschitz condition on the coeffitsg¢han our consideration in [E.O. Ayoola, Existence
and stability results for strong solutions of quantum stochastic differential equations, Stochastic Anal. Appl. 20 (2)
(2002) 263-281], we establish the existence, uniquenasstahility of strong solutions of quantum stochastic
differential equations (QSDE). This enables us to exhibit a class of Lipschitzian QSDE whose coefficients are
continuous on the locally convex space of solution.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

This pager continues our previous work iti][concerning the investigation of the properties of strong
solutions of quantum stochastic differential equations (QSDE) in integral form given by

t
X(t) =Xo + / (E(s, X(8))dAr (8) + F(s, X(8))dA(s) + G(s, X(8))dA; (5)
0
+ H(s, X(s))ds),t € [0, T]. (1.1
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Eqg. 1.2) is understood in the framework of the Hudson—Parthasara&2hyofmulation of quantum
stochastic calculus. The stochastic integrators As, A are the usual gauge, annihilation and creation
processes associated with the basic field operators of quantum field theory, defined, fgibelonging
to appropriate function spaces. On this occasion, we consider a more general class of Lipschitzian
coefficientsk, F, G, H. Under the present Lipschitz condition, we establish the existence, uniqueness
and stability of strong solution of Eql(l). An immediate consequence of our result is that we are able
to exhibit a wider class of Lipschitzian QSDE.{) whose coefficients are only continuous on the space
of our quantum stochastic processes. This extends our previous resulisaichjeved by employing
a method of successive approximations in the same way a8]irOur previous works 1,4—7 have
focussed on some qualitative aspects and approximations of the weak and strong solutlof)saofi(
the associated quantum stochastic differential inclusions considered elsewhere.

We employ thenotations and structures introduced if. [Details of the various spaces employed in
this paper can be found in the reference. We employ strong topology in this paper and refer to the solution
of (1.1) as 4drong compared with the weak topology employed in Refsf] eading to weak solutions
of the associated QSDE. We refer the reader to R&f2,4-1Q for some interesting accounts of the
Hudson—Parthasarathy quantum stochastic calculus.

The rest of the paper is organised as follov@ction 2is devoted to some fundamental results,
notations and assumptions. Our main results concerning the existence, uniqueness and stability of QSDI
(1.1) areestablished irsection 3

2. Some fundamental results and assumptions

As outlined in [1], we shall adopt the following notations and spaces in what folldis. some inner
product space witlR as its completion angt is some fixed Hilbert space. We denote Ibﬁ/(]RJr) the
Hilbert space of square integrable;valued maps ofiR,. := [0, co). Futhermore, we lelE denote the
linear space generated by the exponential vectorl§(ln§(R+)), the Boson Bck space determined by
the spaceL]Z,(]RJr). LetB=L,(DQE, R ® F(Li(RJr))) denote the linear space of all linear operators
fromDQ®E into R ® F(Li(RJr)) with the property that the domain of the operator adjoint contains

D®E. We shalldenote byB the completion of the topological spa¢B, ), wherer is the topology
generated by the family of seminornjg|: = [|x£]|,£ € D®E. Here, | - || is the norm of the space
R® I'(LZ(R,)).

In the formulations of this paper, quantum stochastic processeB-aatued maps defined on the
interval [0, T]. As in [1], we shall denote b)Lf;C([S’), p € (0, 00), theset of adapted, locally absolutely
p-integrable stochastic processes, andAoly53), the set of adapted absolutely continuous stochastic
processes.

In the proofs of our main results, we shall extensively employ the following results due to Hudson and
Parthasarathy?].

Theorem 2.1. (a) Let p,q,u,v € Lﬁ)c(é) and let M be their stochastic integral. #f & € D ® E with
n=cew),t=de),a, e L 0c(R4) and t > 0, then
t
<n, M(t)§> =/0 <n, {<a(s), 1 ()B(9)>, p(s) + <f(s), B(s)>, q(s)
+ <a(s), 9(s)>, u(s) + v(s)}¢> ds. (2.1)
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(b) Let K(T) = supy_s-t max{[{B(s), (8) (), [{ f (5), BO))I, {B(S), g, I () BG) 12, 19()1I%}.
ThenforT>0and0O<t<T,

.
IM(t)& (1% < 6K (T)? /0 e3P + 19(S)EN® + USEN® + I[v(S)& [|?}ds. (2.2)
(c) LetO<s<t <T.Then

t
[(M(t) — M(s))suzsb'K(T)Z/ I p@EN* + llam&N1? + lu(r)é|?
+ [lv()E||*}dr. (2.3)

In particular,M is absolutely continuous and thus belongs to the spzﬁoget’g’).

Definition 2.1. (a) Let FIND ® E) denote the set of all finite subsets BIRE. If x e B, and
O € FIND®E), define||x|lg by [IX]le = Maxco |X[s. Then, the sef] - o : © € FIND® E)}
is a family of seminorms o8. We deote by7 the topology generated by this family of seminorms

onpB.
(b) Letl =[0,TICR,.Amap® : | x B — Bwill be called Lipschitzian if, for eaclj ¢ D®E,
the map satisfies an estimate of the type

&, %) — &, Ylls < KEDIX = Yoy (2.4)

for all x, y € B and aimost alt € | and whereK,” : | — (0, 00) lies inLj, (1) and O is a map
fromD®E into Fin(D ® E).

Remark. Let L(B) denote the linear space of all continuous endomorphisms. dfhen he alove
definition enables us to exhibit a class of Lipschitzian maps as follows.

Theorem22. Let A: R, — L(B)and F : R, x B — B be given by Ft,x) = A(t)x, for
X € B,t € R,. Then F is Lpschitzian.

Proof. Letx,y € B,t € R,, then
IF® x) —F® ylle = IADX — A Yl = JADX =Yl < CgA(t)HX — Ylloa®)

where CgA(t) is a positive function depending oi,t,&, and @ is a map fromD®E into
FIND®E). O

Remark. (a) Theorem 2.2lemonstrates that all continuous linear map§ ofto itself are automatically
Lipschitzian in the sense of this paper.

(b) Since @ is a finite set, we see thg||o = [X||¢, for some&’ € 6. Using the foreggoing fact,
we employ inthe proof of our main results below the fact that a mép: | x B — B is
Lipschitzian in the sense oR{) if, given anyé € DQE, there corresponds’ € D®E such
that[| &(t, x) — &(t, y)lls < KL ®)[x — y|l¢ forall x, y € Band almost alt € I.

(c) Using the definition in (b), we see that,if : R, — B andé& € DQ®E is a fixed point, then
the mapF defined byF (t, x) = |[x&| P(t) is Lipschitzian. This can be shown as follows: for any
teR,, X, Y, € B,

IF,x) —F® Yl =I11UXEl — IYslDPM®lle < [IXEll — ly&olll IP(t)]]e
<IPOIelX — Yllg. O
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3. Existence, uniqueness and stability of solution

The main results of this paper are established in this section. We recall here that by a solution of
Eg. (1.1), we mean an absolutely continuous stochastic progessLZ (B) satisfying Eq. {.1). We
present the following theorem.

Theorem 3.1. Suppose that the coefficients E, F, G, H appearing in (dl) are Lipschitzian and
belong to L2 (I x B). Then ér any fixed point X of B, there exists a unique adapted and absolutely
continuous solutior® of quantum stochastic differential equatidf.1) satisfying®(0) = Xo.

Proof. Asin [1], we will establish the theorem by constructing a Cauchy sequghgg-o of successive

approximations ofd in 5. In wha follows, let¢ € D®E be arbitrary. Lett € [0, T] and define
Po(t) = Xp, and forn > 0

t
Pna(t) =Xo + / (E(S, 2n(9))d Az (S) + F (S, &n(9))dA((S) + G(s, On(s))dA; (S)
0
+ H(s, &,(8))ds). (3.1)

It has been established ifi][that each®, (), n > 1 defines an adapted absolutely continuous process in
L2 .(B). We row consider the convergence of the successive approximations. We have

t
[ Pnya(t) — On(Dle = “/0 (E(s, @n(s)) — E(S, Pn-1(9))d Az (5) + (F (S, $n(S))
— F(s, 20-1(9)dA¢ (S) + (G(S, n(S)) — G(S, Pn-1(5))dA (S)

+ (H(s, &n(s)) — H(s, #y_1(s)))ds (3.2)

£
By Theorem 2.1we have

t
IPnra () — Pa(OF <6K(T)? /0 e7{IE(s. @n(8) — E(S, Pr1(9)I§
+F (s, @n(8) = F(S, Sr19)f + G(s, Dn(s)) — G(s, Pn_1(5))If
+H (S, Pa(9) — H(S, Pn-1(9)Ig)ds. (3.3)

By the Lipschitz conditionZ.4) satisfied by the coefficients df (1), we have for eacM € {E, F, G, H},
IM(S, @n(S)) — M(S, @n_1(5)ll: < KM ()| Ba(S) — Pr-1(S)lley ). Consguently, there existsy; €
O (&) satisfying

120 (S) = Pn-1(S)lloyE) = [12n(S) — Pn-1(9)lly - (3.4)
We naw put
I 20(8) = Eaa®)lley = | maxX (1 20(S) = La-1(S)llg (3.5)

and

C(T) =6K(T)% L; =ess sup|:K$(s) = > k! (5)2:| : (3.6)
s€l0.T] Me(E,F,G,H}
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Thenfrom (3.3,
t
| ora(t) — Pa(t)[IZ < C(T)Le / €% Dn(s) — Pr1(9)II%,ds
0

t
=C(T)L§e‘/ € °(| Bn(S) — Pr-1(9)||Z,Cs. (3.7)
0

Iterating again, there exists an elemént D ® E satisfying estimate of the forn8(5) such hat

t S
1 nsa(®) — Ba(DIZ < CTY2Le L e / / &% | B (S) — (S| dsds. (3.8)
0 JO

At the nth iteration, we have positive real numbel;cgj,j = 0,1,...,n — 1 and etments
S’ Sla 52’ LK) sn S D@E, S = SO, SUCh hat

t S1 Sh-2
18nsa() — Bo®]2 <CTIM(E)NE /O ds; /O ds, - /0 ds, s

Sn-1
< [T e - dosIE s (3.9)
0

whereMp(§) = max{L;, ] =0,1,2,...,n—1} andM (&) = sup,n{Mn(é)}.
By the cortinuity of the maps — || #1(s) — Xoll,, on[0, T] for anyn € D ® E, we have
Re, = sup [ @1(S) — Xollg, < oo. (3.10)
se€[0,T]
Puting R = sup,cyiRs, }, thenfrom (3.9), we get

n

| Brga(t) — Pa(®If < [C(T)M(g)]”eT% RZ, vn=012.... (3.11)

Therefore, for anyn > Kk,
n

> (Pt — D(t))

m=k+1

Se% RE Z ([C(T)|\/|(§")]m-|-m>2

|
m=k+1 m:

L § (COmerTy!

|
m=k+1 m:

n

< Y I®ma®) — En® e

s m=Kk+1

P2 (t) = Prya(D]le =

This shows thathe sejuence{ &,(t)} is Cauchy in53 and converges uniformly to somi&t). Since each
&, (1) is adapted and absolutely continuous, the same is trdgof Next, weshow thatd(t) satisfies
Eq. L.2). Clearly, ¢(tp) = Xo. Again, by Eq. 3.7), there exists) € D ® E such that
t
/ (E(s, Dn(9)) — E(s, 2(5)))d Az (S) + (F (S, Pn(S)) — F(s, 9(9)))dA ()
0

2

+ (G(s, 2n(9) — G(s, 2(5))dA] () + (H(S, Pn(s)) — H(s, ¢(9)))ds

&
t
< C(T)Lget/ eS| Pn(s) — @(s)||5ds — 0 asn — oc.
0
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Thus

()= lim Pny4(t)
t
=Xo + / (E(s, 2()dAx(S) + F (s, 2(5)dA¢(S) + G(s, (9)dA; (S) + H (s, 9(5))ds).
0

Thatis, #(t),t € [0, T]is a solution of Eq.1.1).

Uniqueness

Suppose thatY(t),t € [0, T] is another adapted absolutely continuous solution 1of) (with
Y (0) = Xo. Then, in the same way as in the proof of existence of solution, we obtain the estimate
2 naT T" 2
[&1t) — YOI < [C(T)M(E)]e Tl 0SUDT |2 — YOI, (3.12)
+ O<t=<
Since he right-hand side of3(12) is finite for eachn € N, the sguence converges to zeroms> co.
Consequently|| &(t) — Y(t)|l: =0,V e DQE, and so®(t) = Y(t) onDQE, t € [0, T]. O

Stability

As in [1], we show under our present Lipschitz condition that the solutions to the stochastic differential
equation {.1) are stable. By this stability, we mean that small changes in the initial condition lead to small
changes in the solution over a given finite time interval and for arbitrary elergeat® ® E. To this
end, we make the following notations and statements.

(a) The coefficient&, F, G, H and the integrators.,;, As, Ag; and the Lebesgue measure remain as in
Theorem 3.1above. LetX(t), Y(t), t € [0, T] be the solutions to the QSDE.() corresponding to
the initial conditionsX (tg) = Xg andY (tg) = Yo, respectively, wher&g, Yp € B.

(b) We define the function
Keo) = Y (KMs)% (3.13)
Me(E,F,G,H}

and the constants

L: = ess supKg(s), C(T) = 12K (T)?, (3.14)
s€[0,T]
whereK (T) remains as iTheorem 2.1The sdution X (t) is stable under the changesArity) = Xg
in the following sense.

Theorem 3.2. Givene > 0, thereexids 9 > 0 such that if[| Xo — Yolls < 9, forall £ € D®E, then
IX(®) —Y®)|e < eforallt [0, T].

Proof. As in the proof ofTheorem 3.1let X, (t), forn = 0,1, ... andY,(t), forn = 0,1, ... be the
iterates corresponding to initial conditiog and Yy respectively, so thaXq(t) = Xp andYy(t) = Yy
forall0 <t < T. Then we obtain the following inequalities.
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t
[ Xnt1(®) = Ynra(lle < [1(Xo — Yo)lle + /0 (E(s, Xn(s) — E(s, Yn(9)))d Az (9)
+ (F(s, Xn(s)) — F (s, Yn(s)))dAt + (G(s, Xn(9))

— G(s, Ya(9))A] (S) + (H(S, Xa(8)) — H(S, Ya(9)))ds)| . (3.15)

£
Therefore, by employing the estimatesTheorem 2.1we have

t
1 Xn+1(0) = Yora @12 < 2] Xo — Yoll? + 2 ” / (E(S, Xn(9)) — E(S, Y(9))d A (9)
0

+ (F(s, Xn(8)) — F(s, Yn(5)))dA¢(S) + (G(s, Xn(9))
2

— G(s, Yn(9))dA] (S) + (H(s, Xa(8)) — H(S, Ya(s)))ds

H
t
<2||Xo — Yollf + C(T) /0 e{|IE(s, Xn(9)) — E(s, Yn(s)) 2

+IIF (s, Xn(8)) — F (S, Ya()IIZ + 1G(S. Xa(5)) — G(S, Ya(s))II2
+H (S, Xn(s)) — H(S, Ya(9))[I}ds. (3.16)

By the Lipschitz hypothesis on the coefficieris F, G, H, there eist elementsty 1 € Ou(§) €
Fin(D ® E) for eachM € {E, F, G, H} such that

[ Xnp2(t) = Yopa (D12 <211 Xo — YollZ 4+ C(T)

t
% / et—Sl |: Z KEM (31)2||Xn(31) - Yn(sl)||§m.1:| d51
; .

Me(E,F,G,H}
<2 Xo — Yol + C(T)L:€ /Ot e[ Xn(s1) — Yn(Sl)HgldSl, (3.17)
whereé; € {ém1: M € {E, F, G, H}} satisfying
[ Xn(s1) — Yn(Sm)II§1 = ME{fET}gé’H}{IIXn(Sm) - Yn(sl)llﬁM.l}, s1€[0,T] (3.18)

Similarly, there exist$; € D ® E such that

[ Xn(s1) — Yn(51)||§1 < 2| Xo — Yo||§l +C(T)Lg /081 €172 Xp-1(S2) — Yn_1(Sz)||§2dSQ. (3.19)
Onaccount of 8.17), we have forO<t < T,

[ Xns1(®) = Yara([1F <2/ Xo — YollZ + 2C(T)I[Xo — YollZ, L€ /0 t e ids,

t S
+C(T)?Le L, € / / € %[ Xn-1(%2) — Yn_1(S2) ||, 0. (3.20)
0 JO

Continuing the iteration, we have
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IXn+2(8) = Ynra (D1 <2 Xo — Yol Z€" + 2C(T) [ Xo — Yol Le€'t

t S
+2C(T)2l1Xo — Yoll2,LeLe,€" / / ds,dis;
0 JO
3 2 o Y A

+2C(T)?1Xo — YolZ LeLeyLise / / / ;5,0

0 JO 0

t S
+---+C(T)”+leTLgL§1L$2---Lgn//
0 JO

Sh
< [ IXo(snen) ~ Yol dsicaca- e
0

Finally, by puttingL (§) = sup,cnfLe, Le, Ley, ..., Le,} @nd gy € {£, &1, &, ..., &, &nya) Such that
| Xo = Yoll, = maxX{|| Xo — Yollg;, ] =0,1,2,...,n+ 1}. Then we have,

n+1 m
T
1Xn42(0) = Yos1 (11 = 2671 Xo = Yoll7, > ICNHLEI™—
m=0 .
<2|[Xo — Yol &CTHETH, (3:21)

We now take e square root of both sides 08.21), apply the condition thaf| Xy, — Yoll, < 0
for all n ¢ DQE, and conclude, by lettingn — oo, that | X(t) — Y()[| < €, whered = ¢
[Ze(C(T)L(g)nT)]—%_ 0
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MATHEMATICAL ANALYSIS OF BASIC REPRODUCTION NUMBER FOR
THE SPREAD AND CONTROL OF MALARIA MODEL WITH NON-DRUG
COMPLIANT HUMANS
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Abstract: Malaria arises when there is an infection of a host by Plasmodium falciparum
that causes malaria in humans. Non-drug compliance results from not taking medication as
prescribed by doctors. Previous research had concentrated on mathematical modeling of trans-
mission dynamics of malaria without considering some infectious humans who do not comply to
drug. This study is therefore designed to model transmission dynamics of malaria taking into
consideration some infectious humans who do not comply to drug. The model is formulated
using nonlinear ordinary differential equations. The human population is partitioned into Sus-
ceptible human (Sg), Exposed Human Ey, Infectious human (/g), Non-drug compliant human
Iny and Recovered human (Rpy). Using next generation matrix, the reproduction number Rq
is obtained. This is used to analyse the global stability of the disease-free equilibria and local
stability of the endemic equilibria of the model. The global stability of the disease-free equi-
libria and the local stability of the endemic equilibrium of the model are established through
the construction of suitable Lyapunov function and analysis of characteristic equation. It is
shown that the disease-free equilibrium is globally asymptotically stable whenever R, < 1. It is
also shown that the endemic equilibrium becomes stable through the Routh-Hurwitz stability

criteria. Reproduction number

AMS 2010 Subject Classification: 34C20. 22E30. 92D30

Keywords: non-drug compliance; basic reproduction number; stability.

1 Introduction

Malaria is a complex parasitic disease. It is mostly confined to tropical and subtropical regions
of Africa and Asia because of rainfall, warm temperatures, stagnant water and poor sanitation
that pave way for the provision of conducive environment for mosquito breeding [1, 17, 16].
Although, there were tremendous progresses in the fight against malaria. According to the
World Health Organization’s records for the year 2013, there were 207 million malaria cases
worldwide with 627,000 deaths in 2012 [19, 25].
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Malaria infection is characterized by high fever, chills, sweating, fatigue, headache and nau-
sea. If it is left untreated, it can cause acute anemia, organ failure or brain damage among
the problems. Malaria is common and life-threatening public health problem in many tropical
and sub-tropical areas of the world. It is currently endemic in over hundred countries. Each
year, approximated three hundred million people fall ill with malaria and one million deaths
are recorded. It is transmitted by female anopheles mosquitoes who bite mainly between sunset

and sunrise [3, 26].

Human malaria is caused by five different species of the parasite belonging to genius Plas-
modium: Plasmodium falciparum (the most deadly), Plasmodium vivax, Plasmodium knowlesi,
Plasmodium malariae and Plasmodium ovale. The last two are fairly uncommon. Plasmodium
knowlesi causes malaria in animal but can also infect humans and may be fatal. Animal malaria

does not spread to humans [11].

Malaria symptoms appear seven days or more (usually 7-15 days) after being bitten by
infectious mosquitoes. Malaria is preventable and curable. It can be treated in just 48 hours
through the use of Artemisinin-based Combination Therapy (ACT) with drug compliance. But
it can result into complication if it is diagnosed and treated lately. It can be prevented by using

insecticides, treated bed nets, spraying with residual insecticides e.t.c.

Over the years, mathematical modeling of the spread of malaria has become an important
tool in understanding the transmission dynamics of the diseases, predicting and controlling the
spread of malaria in the future. Bakary et al.,[5] formulated a mathematical model of non-
autonomous ordinary differential equations describing the dynamics of malaria transmission
with age structure for the vector population. They obtained the basic reproduction number, R,
and proved that the disease-free equilibrium is locally asymptotically stable for R, < 1. They
performed numerical simulations to illustrate their analytical results. They concluded that
malaria transmission can be controlled by fighting against the proliferation of the mosquitoes
namely, by reducing available breeder sites. Ousmane et al., [20] presented a mathematical
model of malaria transmission by considering two models: a model of vector population and a
model of virus transmission. They applied Lyapunov principle to study the stability of equi-
librium points. They determined the basic reproduction number using the next generation
matrix. Their numerical simulations revealed that malaria management is concerned firstly
by lowering the mosquito threshold parameters to a value less than unity. Chitnis et al., [7]
formulated a mathematical model for the spread of malaria in human and mosquito population
where they found that the disease-free equilibrium is locally asymptotically stable when R, < 1
and unstable when R, > 1. Their numerical simulations showed that for larger values of the
disease-induced death rate, a subcritical (backward) bifurcation is possible at R, = 1. Wedajo
et al., [24] formulated and analyzed SIR model of malaria that included infected immigrants.
The reproduction number R, of their model was calculated using the next generation matrix
method. They established the global stability of the equilibrium points using the Lyapunov

function and LaSalle Invariance Principle. They simulated their analytical results and con-



cluded that the infected immigrants will contribute positively and increase the disease in the

population.

We modified and extended a model developed by Wedajo et al., [24] by incorporating a
new class of non-drug compliant human compartment into the human population. These are
the people who are given medication by their doctors but do not take it as prescribed. These
include those who fail to take the correct dosage and those who do not complete their medica-
tion, that is, those who stop taking their medication as soon as they think that they feel better
after few days of starting treatment. Using stability theory of nonlinear ordinary differential
equations, global dynamics of the model is analyzed. Also, local stability of the endemic equi-

librium solution of the model is established.

In addition to the introductory section, the paper has three more sections. Section two
shows the mathematical formulation of the model. In section three, transformation of the
model is presented. In section four, stability analysis of the model is carried out. Section five

discusses the results and concludes the modeling work.

2 Materials and Methods

In this section, a model for the spread of malaria in the human population and mosquito
vector population is formulated. A malaria model incorporating some infectious humans who
do not comply with drug, is introduced. The total human population denoted by Ny is sub-
divided into five classes namely; the susceptible humans Sy, the exposed humans Fpy, the
infectious humans Iy, the non-drug compliant humans Iy and the recovered humans Ry so
that Ny = Sy + EFy + Iy + Ing + Ry. Also, the total mosquito vector population denoted
by Ny, is sub-divided into two classes namely; the susceptible mosquito vector, Sy and the
infected mosquito vector Iy. Thus the total population Ny and Ny for human and mosquito
population is given by Ny = Sy + Ey + Iy + Ing + Ry and Ny = Sy + I.

2.1 Nomenclature/Values of Parameters Involved in the Model

a = average biting rate on man by a single mosquito (infection rate) 0.29 [10]
b = the proportion of bites on man that produces infection 0.75 [10]

p = probability that a mosquito becomes infected 0.75 [10]

0= fraction of infectious who comply with drug 0.8 [Assumed|

(1 — 0)7= fraction of infectious who do not comply with drug 0.2 [Assumed]
7 = drug efficacy 0.01-0.7 [Assumed]

d = death rate due to malaria 0.333 [22]

puny = death due to non-drug compliance 0.05 [Assumed]

v = recovery rate 0.0022 [9]

7, = natural birth rate of humans 0.0015875 [9]

7, = natural birth rate of mosquitoes 0.071 [9]



a = progression rate of exposed humans 0.0588 [6]
pp, = natural death rate of humans 0.00004 [8]

f, = natural death rate of mosquitoes 0.05 [9]
r=education on drug use 0.5 [Assumed|

~v=loss of immunity rate 0.000017 [4, 10]

m:% the number of female mosquitoes per human host [2, 23]
H

2.2 Assumptions of the Model

The following assumptions were made in order to formulate the equations of the model:

(a) The exposed humans recover and return to susceptible population if their immunity is able
to combat the dormant parasites

(b) The exposed humans progress to become infectious if their immunity is unable to combat
the dormant parasites

(¢) The exposed humans are those who have dormant parasites in them i.e they cannot yet
infect a susceptible mosquito

(d) All humans are born susceptible and there is no vertical transmission

(e) Some infectious human hosts who are given medication by their doctors and comply with
drug (i.e they take the correct dosage and complete treatment) get treated fully and move to
the recovered human host compartment.

(f) Some infectious human hosts who do not comply with drug get treated partially and move
to non-drug compliant human compartment.

(g) Proportion of active parasites are still in the blood of non-drug compliant humans

(h) When a susceptible mosquito bites the non-drug compliant humans, it becomes infected
(j) Susceptible humans progress to become exposed.
(

k) Recovered humans have some immunity that can be lost and again susceptible.

The population of susceptible humans is generated either by birth or immigration at a
constant rate 7. The interaction of humans and female mosquitoes is modelled by standard

bSuI
incidence [23], with the terms aNﬂ, which denotes the rate at which susceptible humans

Sy get infected by infected mosqui’g)es Iyy. The population increases at the rate v due to the
recovery rate of the exposed humans (if the immune system of the exposed humans is able to
combat the dormant plasmodium parasite because at the exposed stage, plasmodium parasites
are still dormant in the liver). It increases again due to loss of immunity of recovered humans
at the rates v. The population also decreases when the susceptible humans die naturally at the
rate p,. Putting all these together gives the following equation for the rate of change of the

susceptible population:

ds bSy T
woH :WhNH — M—I—VEH—F’YRH _,uhSH
dt Ny

The population of exposed humans is generated as a result of progression of the susceptible
humans who are infected with plasmodium falciparum by the infected mosquitoes but have

not started displaying symptoms, i.e., they are infected but not yet infectious, with the terms

4



abSH]V

. It decreases as a result of recovery of the exposed humans and the progression of

the exposed humans to become infectious(the dormant parasites undergo nuclear division and

thousands of them move down to the blood stream, if the immune system is unable to combat

the parasites at the exposed stage) at the rates v and aab. It diminishes due to natural death
at the rate py. Thus,

dEH (ZZ)SHIV OéCLbSHIV

= —vEy — —22%

dt Ny Ny

The population of infectious humans is generated by the progression rate of the exposed humans

— un By

at the rate aab. It diminishes due to drug efficacy 7, death due to malaria 6 and natural death

ty. Thus we have
dIH . aabSHIV TabSH]V ST I
a Ni Niy H — HUrlg

The population of non-drug compliant humans is generated by a fraction (1 — @)7 of infectious

humans who do not comply with drug. The population reduces due to non-drug compliance,
education on drug use and natural death at the rates puy, 77 and py so that
dl 1 —0)1abSyl
i _ ) TV unIng — rrlvg — pnIvn
dt Ny

The population of recovered humans is generated by the fraction 67 of infectious humans who

comply with drug. It reduces due to loss of immunity of the recovered humans and natural
death at the rates v and p;. It again increases due to education on drug use at the rate r 7.
Thus,
dRy  OtabSyly
it~ Ny
In a similar way, the population of mosquito vector changes so that we have the following:

dSy apSy Iy + Inm)
WV N —
ar VY Ny

—vRy +r7ing — un Ry

— py Sy

d[v _ CLpSV(IH +INH) _ [
dt Ny wy iy

Putting everything together, we have the following system of ordinary differential equations:

dSH CLbSH]V

W = 7ThNH — NH —+ I/EH -+ ’}/RH - ,U,hSH (21)
dEH abSHIV OéCLbSHIV
= —vEy— — 2V L E 2.2
dt Ng T TN, e (22)
d]H . aabSH]v TabSHIV
dl 1 —0)rabSyl
NH == ( ) A7V _N'NINH_TT]NH_,MhINH (24)
dt Ny

dR OtabSy I
dtH = NHH Y — YRy +r7lyg — pnRy (2.5)
dSV apSV(IH + INH)

—L = myNy - — 11,5, 2.
dt Tvav Ny HoS (2.6)
d[v ClpSV(IH + [NH)

= — py I 2.7
dt Ny v iv (2.7)
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Diagram for Malaria Model Incorporating a New Class of Non-Drug Compliant Human
Compartment

The restriction on the initial population arises from the fact that the variables describe the

dynamics of human and mosquito populations. Therefore, for the model to be biologically

meaningful, all the initial conditions and parameters must be non-negative. Thus Sy (0) > 0,

The total population sizes Ny and Ny are

dN,

d—tH (Wh_ﬂh)NH_(SIH _MNINH
dN;

d_tv - (WU_MU)NV

mosquito vector population.

which are derived by adding (2.1)-(2.5) for the human population and (2.6)-(2.7) for the

(2.8)

(2.9)



3 Transformation of the model

It is convenient to use fraction of population instead of population number. This is done by

dividing each population class by the total population and hence, we have:

Su. _lw. _Bu, D, _Ra S _ TN
NHJ h NHJ h NH7 nh NH’ h NH’ v NV’ v NV’ NH
Differentiating the fraction with respect to time t gives the following;:

Sp =

d

% = mp(1 — sp) — abmsyi, + ve, + yry + Ispin + N Shinn (3.1)
d

% = abmspi, — (Vv + m)en — aabmsyi, + depin + pineninn (3.2)
di

% = aabmsyi, — Tabmspi, — (8 4+ 7)in + 005 + UNTRInn (3.3)
di, . ) . .

;th = (1 —071)abmspi, — (un + 7T + Th)inn + Oininn + NGy, (3.4)
d

% = Orabmspi, — (v + 7p)rn + SipTh + rTinn + UNTanTh (3.5)
ds, . .

e (1 — 8y) — apsy, (in + inn) (3.6)
di,, . . .

L;t = apsv(lh + Znh) — Tyly (37)

From the relation s,+en 41+, +7r, = 1 and s,+1i, = 1, it implies that r, = 1—s,—ep,—inp—inn

and s, = 1 — 4, which reduces to the following system of differential equations:

% = (1 — sp) — abmspi, + vep + (1 — s, — e, — i — inp) + 0Spin + PN Shing (3.8)
% = abmspi, — (Vv + mp)ep — aabmspi, + depin + fnepinn (3.9)
% = aabmsyi, — Tabmsyi, — (8 + 7)in + 645 + PN ininn, (3.10)
d;zh = (7 —07)abmspi, — (i + 77 + T8 )inn + Oininn + finis, (3.11)
% = apip(l = iy) + apinn(1 — iy) — Tty (3.12)

3.1 Existence of Solutions

Here, we provide the following result which guarantees that the malaria model governed by the
system (3.1)-(3.7) is epidemiologically well-posed in a feasible region I' defined by

FreR? and I,UT, C R *RL

Lemma 1: The solutions of the system are contained and bounded in the region, I' € #7 and
r.ur; c %i*?ﬁi

Proof: We show that the feasible solutions are uniformly bounded in proper subsets I' € R .
Let (Sh, €n, in, ik, Thy Su, by) € R7 be any solution of the system given by Nj, = sp+ep+in+inn+1s

and N, = s, + 1, with non-negative initial conditions. In differential form, we write

Ao _ dsw  den | din  din, | dry

ot at T at e T T
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dN, ) . . .
—h Th — (7Th — 01, — ,UNlnh)Nh — 01, — [UNTnh

dt

since
Sp+ep +ip + gy + 1 = Ny

dN. ) i ) )

d_th =7, — (T — 0ip — pUNTnn) Np — 8ip — fANTnn
Hence we have

Ny, . . . .

s + (7, — 8ip — puntnn) N = T — 0ip — pUNinn

Solving yields
N, =1+ Bef(ﬂh*&h*/winh)t
Applying the initial condition N,(0) = N leads to
N,=1+ (Ng _ 1)6—(7Fh—5ih—mvinh)t

Thus N, > 1last— o0

And AN
dtv =Th — TrUN’U

dN,
d_th + 7TUN’U = Ty

We solve to obtain
N, =1+ (N2 —1)e ™'
Thus N, > 1ast — o0
Hence the feasible region for the model is given by
I'=
(Shy €hy Thy Lnhs Thy Sus Bp) € RE5 Shy €hy Tk, Ik Thy Sus by > 0, 8p + €p + ip + np, + 17 = 158, + 4, = 1 which
is positively invariant set for the model system. Hence, the model is well-posed and biologically
realistic and meaningful. Thus, all solutions of the human population only are confined in the

feasible region I';, and all solutions of the mosquito vector population are confined in I,

3.2 Basic Reproduction Number

The computation of the basic reproduction number R, is needed in order to assess the global
stability of disease-free equilibrium. This is obtained by expressing (3.8)-(3.12) as the difference
between the rate of new infection in each infected compartment F and the rate of transfer

between each infected compartment G. Hence, we have

- dep T
Tl; abmsyi, — aabmspi, (v + 7)) en + denin + pneninn
| FoGo— aabmspi, — Tabmsyi, B (8 + h)in + 002 + Unininn
tnh (7 — O1)abmsyi, (U + 7T + T )inn, + Sininn + fini2y,

at apSyin — APSiny Tl

L at




The Jacobian matrices Jr and Jg of F and G are found about Ej.

[ 0 0 0 0 ]
0 0 0 a
1 Z{ﬁ
—abma 4+ abm  —abmt 4+ abmt  (—70 4 T)abm 0
v+ 0+ rT+ uN + T

R, is the maximum eigenvalue of S given as
R _ a*bmp(rra — r7® — réf — 10w, + 70 — TuN + apuy + amy)
° 7o (170 + 17, + Sy + 0mh 4 pnT + )
a*bmp(rra — r7? —rdl — 70, + 70 — TN + QN + amy)
T, ArBr

R, =
where
Ar =90+ m, and By = uy +r7 + 73

4 Results and Discussions

4.1 Global Stability of the disease-free equilibrium

The disease-free equilibrium solution is obtained by setting the right-hand side of (3.8)-(3.12)
to zero to obtain F, = (1,0,0,0,0). Hence, we provide the dynamical behaviour of the model
(3.8)-(3.12) as its solution trajectories approach the disease-free equilibrium solution in what
follows:

Theorem 1: The disease-free equilibrium E, of (3.8)-(3.12) is globally asymptotically stable
in I if R, <1 and unstable if R, > 1.

Proof: Consider the Lyapunov function L = aproéfe, + (aprt + apuy + apmy)ip + (apra +

apmy, + apd)iny + ArBri,. Its time derivative is

L = apr(SG% + (aprT + apuyn + apﬂh)% + (apra + aprmy, + apé)% + ATBT%
= apréb(abmspi, — Crep, — cabmsyi, + depin + pneninn) +
(aprT + appy + apmy)(abmsyi, — Tabmsyi, — Apiy + 05y + finining) +
(apra+ apmy, + apd)(Tabmsyi, — OTabmsyi, — Brin, + Sipinn + inisg,) +
ArBrlapin(1 — i) + apinn (1 — iy) — Ty
= a®’bmp(rra —r7* — 100 — 7O, + 76 — TN + Qpn + QT )Spiy —

ArBrmyi, — Dapey, — Eapip, — Fapin, — Ga*bmpsni,
= ATBTinv (

a’bmp(rra — r7® — 160 — 707, + 76 — TN + aun + amh)Sk B 1) B
Ar By,
Dapej, — Eapiy, — Fapiy,, — Ga*bmpsyi,
= ApBrmyiy(Rosy — 1) — Dapey, — Eapij, — Fapiyn, — Ga*bmpsyi,
< ArBrmyiy(Ros, —1) <0 if Ry <1



where

AT:(S—Fﬂ'h
BT:MN+TT+7T}L
CT:V+7Th

D = ré60CT — 6%i,10 — punin, 60

E = Apr7m + Appuy + ArBriy + Apmy, — 0iptT — NG TT — Oipfin — UNT2, — OIpTTh — UNTnhTh —
Sippr e — Oy T, — 0%y, — ApBr

F = Brra+ Brm, + Brd + ArBriy, — ArBr — iphANO — TnhAINTH — IINTppT QL

G = ardb + tm, + Orra — 016 — Tra — T,

Therefore, L' < 0 for R, < 1. One sees further that (sp,ep,in, inn, iy) — (1,0,0,0,0) as
t — oo. Consequently, the largest compact invariant set in {(sp, en,in, inn,in) € I' : L' = 0}
is the Ey and by Lyapunov-Lasalle’s principle [14, 12], the disease-free equilibrium point is
globally asymptotically stable in I" if R, < 1 and this completes the proof of Theorem 1.
The epidemiological implication of the result implies that the disease can be eradicated with

population that starts with either large or small number of infectious humans whenever R, < 1.

4.2 Local Stability of Endemic Equilibrium

We shall first show the interval where the endemic equilibrium exists using the idea of Tumwiine
et al.[23]. Hence, for the existence and uniqueness of endemic equilibrium Fy = (s}, €}, 5, 0%, %),
its coordinates should satisfy the conditions s; > 0,e; > 0,77 > 0,4y, > 0,7, > 0. Adding
(3.8)-(3.12), we have

Th(1 = sp — €, — i, —iny) + Y (1 — ), — e — iy — iny,) = 06 (L — sj, — € — i, — i) — punvin, (1 —
sy —ep —iy —i%,) +apir (1 —it) +apit, (1 — @) — myil + rrit, — Orabms;il =0

From (3.12), api},(1 —i%) + apil, (1 — i) — myi, =0

This yields

(mp + 7y — 605 — pnit (1 — 55 — e — iy —ik,) = Orabms;il — r1il,.

-k

Since (1 — s} —ep — iy —i,) > 0 and Orabms} il — r7i¥, > 0, then

T+ — 0iy, — puniy, >0 (4.1)

Further simplification gives

Th+7 > 06, + pnin,

since death due to non-drug compliance py implies death due to malaria ¢, then
pn =0

Therefore, m, +~ > dip + dir),

(05, + 754) < (o +7)

This gives

(it +i%,) < Ah;”.

Therefore, an endemic equilibrium point exists, where (i} +i7,) lie in the interval (0, min {1, ’\h—dﬂ }).

If 6 < Ap+7, the interval becomes large and this means that malaria persists in the population.

10



We next analyze the stability of endemic equilibrium FE; using the Jacobian matrix computed
for (3.8)-(3.12) given by

Jin v—r —y+0s; —v+uns; —abmsy,
abmiy — cabmsiy, J22 dej, ey, abms; — Tabmsj,
Jp, = . . . (4.2)
aabmzi;, — Tabmai;, 0 J33 N, aabmsj; — Tabms;,
Tabmiy — O0rabmi;, 0 o, Jua Tabms} — OTabmsj,
_ 0 0 ap(l—i) ap(1—1) ]

where
Jii = —mp — abma), — v + 01 + iy,
Jog = —v — mp, + 0% + pniy,

J33 =—0— T + 2(522 + NNi;h

J44 = —UN —TT — Tp + (522 + 2#1\[12;1

Using Sarrus diagram, i.e.,
a1b203d465 -+ a2b304d5€1 -+ a3b4c5d162 -+ a4b561d2€3 -+ a5b102d364 —
a1bscadsey — asbicsdses — asbacidses — agbscadies — asbycsdaer,

the characteristic equation of the Jacobian matrix (4.2) at the endemic equilibrium point

*
v

Ey = (s},ep,i5,1%,,15) is a fifth degree polynomial given by

Naa M +a+a)+a +as = 0 (4.3)

11



where

ag =

ay =

1

(abmil + v + v + 2wy, — 200y — 2upir,) + (apiy + apir,, + 7)) + (0 + m, — 201, — pnir,) +

(un + 717+ 70 — 60y, — 2uning,)

(6 + mp — 204y, — pning) (U + 7T + T = iy — 20Nin,)

+(apiy, + apiy), + m,) (0 + 7 — 200y, — pniny, + pn + T 4 T — 800, — 20N, ) +

abmil 4+ v + v+ 2w, — 2005, — 2unin, ) (0 + T — 200 — pNiy, + pN T+ T — 06, — 2uNiny,) +
abmiy, + v + v+ 2w, — 20%; — 2untyy) (apiy + apiy, + 7)) + (abmiy + m, — v — 6i) — pniny,)

(apiy + apiy), + 7,) (8 + 7 — 204), — pnin, ) (un + 77 + 7T — Ot — 2uNiy,) +

abmil + v + v+ 2w, — 200 — 2unin,) (0 + 7 — 200 — pnisy)

UN + 1T 4 T — 0y, — pniy,) + (abmil + vy + v + 21y, — 260, — 2Nty (apiy, + apiy, + )
§ + mp — 204y, — pNin, + pN + T 4+ T — din, — 2uNin,) +

(

(

(

[

(

(

(

(abmig, + 7 — vy — 81, — puning ) (V + T — 0, — pviy)
(0 4+ mp — 284, — uNirny, + UN + 17 4+ T — iy, — 2uNTy,) +

(api}, + apiy, + m,)(abmiy + w1, — v — 0iy — pning,)(V + T — 1), — pning,)]

[(abmiy + v + v + 27, — 284, — 2unir,) (apiy + apiry, + m,) (0 + T, — 200), — pnisy,)
(bn + 7T + T = Ol = 2paniny) + (apiy, + apiyy, + m)

(0 + 7 — 204, — Ny, + N + 17 + T — 010, — 2uning)]

(abmi}, + 7, — v — iy, — pnin,) (V4 m — 08 — unin,)

(apiy + apiy, + ) (0 + 7 — 2005 — pnin,) (N + 77 + T — 80y — 20Nin,) +
abm(v — v)ap(l — i) (o — a)sy (pun + r7 + T + 0ty — 2uniny,) +

2 % %

a’*m?i}sy (1 — a)ap(l — i) (v + m, — 01y — puving,)(0sy — ) =0

Clearly, ap > 0. Since 7, + v — dij — pnik, > 0 from (4.1), then abmil + v + v + 27, —

20 — pnir, > 0, 0 + m, — 2005 — pniy, > 0 and py +r7 + T, — 01, — 2uniy, > 0. Clearly,
apiy + apiy, + m, > 0. It then follows that a; > 0, as > 0, a3 > 0, as > 0 and a5 > 0 for

abmi +y+v+2m, — 2005 —punis, > 0, 0+, —200F — Nty > 0, uny+r74+7mH—08", —2uNtr, > 0

and apij + apiy, + m, > 0. Therefore, all the coefficients a;s are positive. The necessary and

sufficient conditions for the local stability of the endemic equilibrium FE; are that the Hurwitz

determinants, H;, are all positive for the Routh-Hurwitz criteria [18]. Hence, since a; > 0,

as >0, a3 >0, ay >0 and as > 0, then

H, >0,

H2 > a1ap —as > O,

Hs = ajasas + aras — CL%CM — a% > 0,

H4 = (a3a4 — a2a5)(a1a2 — ag) — (a1a4 — Cl5)2 > 0,
Hs =asHs > 0
Therefore by Routh-Hurwitz theorem [15, 18], all the eigenvalues of the polynomial P()\) have

negative real parts and the endemic equilibrium is locally asymptotically stable.
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The theorem below summarizes the above result:
Theorem: The endemic equilibrium is locally asymptotically stable if all the eigenvalues of

the polynomial P(\) have negative real part.

5 Discussion of Results and Conclusion

In this work, a mathematical model is formulated and analysed to study the transmission
and spread of malaria parasite in a population. The model incorporates a class of non-drug
compliant human compartment into the population. A 7-dimensional system of nonlinear
ordinary differential equations is modelled. It is shown that there exist a domain I" where the
model is well-posed and biologically meaningful. The disease-free equilibrium points of the
model are obtained and analysed for stability. The condition for disease spread which is the
basic reproduction number, Ry, is calculated respectively. It is shown that when Ry < 1, malaria
is cleared from the population. Whereas, if Ry > 1, the disease persists in the population. Thus,
a new class of non-drug compliant humans can contribute to the spread of malaria as susceptible
mosquitoes get infected when they bite this group thereby spreading malaria in the population.
Also, public health can educate people on the effect of the incorporated non-drug compliant
human compartment on transmission dynamics of malaria model by using this article as a study

guide for seminars, workshop or training programs.
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