Skip to main content
Submitted by oe.oyewande on May 23, 2024

     

      

    oy

                                                                                                                                                                  

    Name: Oluwole Emmanuel OYEWANDE
    Designation: Professor of Theoretical Physics (since 2019)
    Academic Qualifications: B.Sc, MSc Physics (Ibadan), PGD Cond. Matt. Phys. (Trieste), Dr. rer. nat. Theor. Phys. (Goettingen)
    Faculty: Science
    Department: Physics
    Office: Room 123 (Upper Vestibule) Main Building, Department of Physics
    Email: oe.oyewande@ui.edu.ng (always cc: eoyewande@gmail.com)
     

    Areas of Specialisation:

    • Statistical Mechanics of Disordered and Complex Systems; i.e., statistical physics analytic, and Monte Carlo modelling and simulation, methods applied to the study of diverse disordered systems. E.g., material fracture (from crack nucleation and propagation to breakdown of materials), self-organised surface nanostructure morphology and propagation induced by ion-bombardment, molecular chirality transfer and matching (with applications to facial/object/structure recognition in databases), biophysical systems (e.g., protein folding, drug design and discovery). Same methods combined with graph theory to study the networks of diverse complex systems.

           Selected Publications, (click the paper title link) for details:

    1. O. E. Oyewande and A. Akinpelu (2018). An ion-beam surface sputtering approach to the quest for lead-free metal halide perovskite for solar cellsNuclear Instruments and Methods in Physics Research Section B 434, 102.

    2. O. E. Oyewande (2015). A quasi-conserved particle Monte Carlo model of surface evolution with semi-empirical⁠⁠⁠⁠⁠⁠ sputter yield modulated erosion: 1 keV Ar+ sputtering of Si.  Transactions of the Nigerian Association of Mathematical Physics 1, 301 - 308.

    3. O. E. Oyewande (2013). Nanometric scale surface science and the Markov chain Monte Carlo simulation of disordered systemsJournal of the Nigerian Association of Mathematical Physics 25, 1 - 10.

    4. O. E. Oyewande, M. P. Neal, and R. Low (2009). The Hausdorff chirality measure and a proposed Hausdorff structure measureMolecular Physics 107, 281.

    5. O. E. Oyewande, R. Kree, and A. K. Hartmann (2007). Numerical analysis of quantum dots on off-normal incidence ion sputtered surfacesPhysical Review B  75, 155325.

    6. O. E. Oyewande, R. Kree, and A. K. Hartmann (2006). Morphological regions and oblique-incidence dot formation in a model of surface sputteringPhysical Review B  73, 115434.

    7. O. E. Oyewande, A. K. Hartmann, R. Kree (2005). Propagation of ripples in Monte Carlo models of sputter-induced surface morphologyPhysical Review B  71, 195405.

    8. O. E. Oyewande, Y. Moreno, F. Kun, R. C. Hidalgo, and H. J. Herrmann (2003). Time evolution of damage under variable ranges of load transferPhysical Review E  68, 026116.
       

    • Mathematical Physics; e.g., modelling and simulation of dynamical evolution of ion-sputtered surfaces and nanostructure patterns formation using deterministic and stochastic linear and non-linear partial differential equations.

            Selected Publications, (click the paper title link) for details:

    1. O. Kolebaje, O. Popoola, M. A. Khan, O. Oyewande (2020). An epidemiological approach to insurgent population modeling with the Atangana–Baleanu fractional derivativeChaos, Solitons & Fractals 139, 109970.

    2. O. E. Oyewande (2012). A unified spatio-temporal framework of the Cuerno-Barabasi stochastic continuum model of surface sputteringCommunications in Theoretical Physics 58, 165.
       

    • Quantum Theory; e.g., study and development of exact analytical or  perturbative and variational methods of solving quantum dynamical equations of motion, using linear algebraic or wave mechanics representations, and calculating the physical properties of matter; use of computational quantum chemistry softwares for the discovery of novel materials (e.g., in search of materials for cheaper, more durable and efficient solar panels for electricity generation); study of the theoretical fundamentals of the hybridised methods (perturbative, variational, density functionals, Kohn-Sham schemes, etc.) applied in the softwares relative to above interest for improvement; quantum computing problems.

      Selected Publications, (click the paper title link) for details:

    1. T. Atsue and O. E. Oyewande (2024). Investigating the CsAuX3[X=Cl, Br, I] perovskitee materials properties responsible for photovoltaic applications: A first-principles studyComputational Materials Science 236, 112881.

    2. T. Atsue and O. E. Oyewande (2024). First-principles study of the structural, mechanical, dynamical, and transport properties of Cs2NaInX6[X = Br,I] for thermoelectric applicationsCurrent Applied Physics 57, 70.

    3. T. Atsue, I. B. Ogunniranye, and O. E. Oyewande (2021). Investigation of material properties of halide mixed lead - free double perovskite for optoelectronic applications using first-principles studyMaterials Science in Semiconductor Processing 133, 105963.

    4. I. B. Ogunniranye, T. Atsue, and O. E. Oyewande (2021). Structural and optoelectronic behavior of the copper-doped Cs2AgInCl6 double perovskite: A density functional theory investigation. Physical Review B  103, 024102.

    5. T. Atsue, O. E. Oyewande, and I. B. Ogunniranye (2019). A review of recent progress in fine-tuning the physical properties of perovskite materials. Journal of Science Research: Proceedings of the 4th International Conference on Scientific Research in Nigeria, Faculty of Science, University of Ibadan, 20 - 23 May, 2019; Theme: Innovative Scientific Research and National Development, pp 41 - 52.
       

    • High Energy Physics [QFT with symmetries (e.g., using Lie groups of abstract algebra) and its applications to particle physics within and beyond the standard model]; noch im bau!
       

     

     
     

     
    Publications
    Facebook:Pinterest:LinkedIn:
    Instagram:YouTube:Twitter: